Software Performance Estimation for a Mission Level Design Flow

Date: 28.09.2004
Author: Thomas Lohfelder
Contents

- Introduction
- Design Flow in MLDesigner
- Software Performance Estimation
- Example
- Outlook
Introduction

- Electronic mixed hardware/software systems are raising in complexity at an exponential rate.
- Time-to-market should be decreased while the quality should stay the same or should become better.
- Therefore, several computer-aided design methodologies for detailed modeling of such systems (VHDL, C Code) were introduced in the last years.
Introduction

- Nowadays the reached complexity makes detailed modeling impossible.
- Major problems rising with this complexity:
 - Immense modeling effort
 - Simulation speed
- Solution:
 - Raise level of abstraction without loosing too much of the accuracy
Design Flow in MLDesigner

- Performance Model:
 - Describes the architecture
 - Software is modeled as simple delays
Design Flow in MLDesigner

- Functional Model:
 - Describes the software
 - Independent of level of abstraction
Design Flow in MLDesigner

- Implementation:
 - HW Model: HW Description Language
 - SW Model: Source Code

- HW/SW Co-Simulation:
 - Concurrent Simulation of HW and SW
MLDesigner Design Flow

Software Performance Estimation:
- Takes Source Code
- Estimates Cycles Counts

- Specification
 - Performance Model
 - Performance Simulation
 - Functional Model
 - SPE
 - Implementation
 - Hardware Model
 - Hardware Simulator
 - SPE
 - Software Model
 - HW/SW Co-Simulation
Software Performance Estimation

- Definition
- Approaches
- General Work Flow
- Work Flow in MLDesigner
Definition

Software Performance Estimation

- Is the estimation of the performance of a piece of software running on a specific target processor
- Requirements: Source code must exist
- Result: Cycle count
Approaches

- Statistical Estimation
- Source-Based Estimation
- Compilation-Based Estimation
- Estimation using Instruction Set Simulators
Software Performance Estimation for a Mission Level Design Flow

Approaches

- Statistical
- Source-Based
- Compilation-Based
- ISS
- Optimum

Accuracy vs. Speed

Speed:
- Fast
- Slow

Accuracy:
- Low
- High

±300%
General Work Flow

- Cross compiler generates target binary on host machine
- Instruction set simulator executes binary and calculates necessary cycles
- Simulator calculates delay caused by the code execution from cycles
Work Flow in MLDesigner

- CGC Domain is a code generation domain of MLDesigner for generation of C Source Code
- CGC Co-Design target introduced
Work Flow in MLDesigner

- GNU Compiler Collection
- C front-end of GCC is used for cross compiling
- GCC contains cross-compilers for processors like ARM, Motorola 68k, PowerPC and MIPS
Work Flow in MLDesigner

- GNU Project Debugger
- GDB is a collection of instruction set simulators
- GDB contains fast instruction set simulators like the ARMulator for the ARM processor
Work Flow in MLDesigner

- Performs DE Simulation with delays calculated from cycles and processor speed
Example

- Problem Definition
- Model Generation
- Simulation and Results
Problem Definition

- Selection of an algorithm that has a runtime depending on the incoming data
 -> Fibonacci Algorithm

- 1. Task: How many Fibonacci numbers can be calculated by an ARM processor with 2.5 Mhz in one second

- 2. Task: How do compiler optimizations influence the result
void fibonacci(int n) {
 int data[n];
 int i, j, temp, c;
 i = 1;
 j = 0;
 for (c = 0; c < n; c++) {
 data[c] = i;
 temp = i + j;
 j = i;
 i = temp;
 }
}
defprimitive
{
 name {Fibonacci}
 domain {CGC}
 ...

codeblock(fibonacci)
{
 int data[$ref(Input)];
 int i, j, temp, n;
 i = 1;
 j = 0;
 for (n = 0; n < $ref(Input); n++)
 {
 data[n] = i;
 temp = i + j;
 j = i;
 i = temp;
 }
 $ref(Output) = 1;
}
go
{
 addCode(fibonacci);
}
Model Generation

C Function

CGC Primitive

DE System

Software Performance Estimation for a Mission Level Design Flow
Simulation and Results

- C Function
- CGC Primitive
- DE System
- Simulation
Simulation and Results

C Function
→ CGC Primitive
→ DE System
→ Simulation

Software Performance Estimation for a Mission Level Design Flow
Simulation and Results

Software Performance Estimation for a Mission Level Design Flow
Outlook

- Abstract modeling of hardware and software including the according synthesis algorithms
 - FSM
 - UML
 - SystemC
- Development of modeling capabilities at implementation level
Thank you for your attention!