Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1620
Erstellt: Tue, 23 Apr 2024 23:16:53 +0200 in 0.0599 sec


Petrich, Martin; Kletzin, Ulf
Practical fatigue strength diagrams for compression springs based on the FKM-guideline “Analytic Strength Assessment for Springs“. - In: International journal of fatigue, Bd. 183 (2024), 108273, S. 1-8

Metal springs are used extensively in technical products. The mathematical relationships and Goodman diagrams contained in the DIN EN 13906-1 standard form the essential basis for the design and calculation of cylindrical helical compression springs. They are used not only nationally, but internationally in the spring industry and by spring users. However, the diagrams are more than 50 years old and no longer reflect the current status of modern spring materials and spring manufacturing technologies. This results in great uncertainty for users of the standard, which currently has to be compensated by costly fatigue tests. In order to overcome the problems, the research project IGF 19693 aimed to renew the Goodman diagrams of the DIN EN 13906-1 standard in accordance with the state of spring technology. Therefore, the FKM guideline “Analytic Strength Assessment for Springs and Spring Elements“ was used to calculate permissible fatigue strength values for standard springs. Additionally, an extensive experimental program was carried out with fatigue tests on cold-formed helical compression springs to validate the calculations. The main results of the project are presented in this manuscript, which strengthens SMEs in designing competitive springs, which they can offer in a shorter time and at a lower cost due to lower development costs.



https://doi.org/10.1016/j.ijfatigue.2024.108273
Jaurigue, Lina; Lüdge, Kathy
Reducing reservoir computer hyperparameter dependence by external timescale tailoring. - In: Neuromorphic computing and engineering, ISSN 2634-4386, Bd. 4 (2024), 1, 014001, S. 1-16

Task specific hyperparameter tuning in reservoir computing is an open issue, and is of particular relevance for hardware implemented reservoirs. We investigate the influence of directly including externally controllable task specific timescales on the performance and hyperparameter sensitivity of reservoir computing approaches. We show that the need for hyperparameter optimisation can be reduced if timescales of the reservoir are tailored to the specific task. Our results are mainly relevant for temporal tasks requiring memory of past inputs, for example chaotic timeseries prediction. We consider various methods of including task specific timescales in the reservoir computing approach and demonstrate the universality of our message by looking at both time-multiplexed and spatially-multiplexed reservoir computing.



https://doi.org/10.1088/2634-4386/ad1d32
Günther-Müller, Sarah; Azizy, Raschid; Strehle, Steffen
Droplet motion driven by liquid dielectrophoresis in the low-frequency range. - In: Micromachines, ISSN 2072-666X, Bd. 15 (2024), 1, 151, S. 1-16

Electrohydrodynamic wetting manipulation plays a major role in modern microfluidic technologies such as lab-on-a-chip applications and digital microfluidics. Liquid dielectrophoresis (LDEP) is a common driving mechanism, which induces hydrodynamic motion in liquids by the application of nonhomogeneous electrical fields. Among strategies to analyze droplet movement, systematic research on the influence of different frequencies under AC voltage is missing. In this paper, we therefore present a first study covering the motion characteristics of LDEP-driven droplets of the dielectric liquids ethylene glycol and glycerol carbonate in the driving voltage frequency range from 50 Hz to 1600 Hz. A correlation between the switching speed of LDEP-actuated droplets in a planar electrode configuration and the frequency of the applied voltage is shown. Hereby, motion times of different-sized droplets could be reduced by up to a factor of 5.3. A possible excitation of the droplets within their range of eigenfrequencies is investigated using numerical calculations. The featured fluidic device is designed using larger-sized electrodes rather than typical finger or strip electrodes, which are commonly employed in LDEP devices. The influence of the electrode shape is considered simulatively by studying the electric field gradients.



https://doi.org/10.3390/mi15010151
Schaaf, Peter; Constantinescu, Catalin; Matei, Andreea
Laser material processing: from fundamental interactions to innovative applications (E-MRS). - In: Applied surface science advances, ISSN 2666-5239, Bd. 21 (2024), 100592, insges. 1 S.

https://doi.org/10.1016/j.apsadv.2024.100592
Sharifi Ghazijahani, Mohammad; Cierpka, Christian
Spatio-temporal dynamics of superstructures and vortices in turbulent Rayleigh-Bénard convection. - In: Physics of fluids, ISSN 1089-7666, Bd. 36 (2024), 3, 035120, S. 035120-1-035120-19

Understanding turbulent thermal convection is essential for modeling many natural phenomena. This study investigates the spatiotemporal dynamics of the vortical structures in the mid-plane of turbulent Rayleigh-Bénard convection in SF6 via experiments. For this, a Rayleigh-Bénard cell of aspect ratio 10 is placed inside a pressure vessel and pressurized up to 1, 1.5, and 2.5 bar in order to reach Rayleigh numbers of Ra = 9.4 × 10^5, 2.0 × 10^6, and 5.5 × 10^6, respectively. For all three cases, the Prandtl number is Pr = 0.79 and Δ T ≈ 7 K. Then, stereoscopic particle image velocimetry is conducted to measure the three velocity components in the horizontal-mid-plane for 5.78 × 10^3 free fall times. For the given aspect ratio, the flow is no longer dominated by the side walls of the cell and turbulent superstructures that show a two-dimensional repetitive organization form. These superstructures show diverse shapes with faster dissipation rates as Ra increases. Out-of-plane vortices are the main feature of the flow. As Ra increases, the number of these vortices also increases, and their size shrinks. However, their total number is almost constant for each Ra through the measurement period. Furthermore, their occurrence is random and does not depend on whether the flow is upward-heated, downward-cooled, or horizontally directed. Vortex tracking was applied to measure lifetime, displacement, and traveled distance of these structures. The relation between lifetime and traveled distance is rather linear. Interestingly, in the vortex centers, the out-of-plane momentum transport is larger in comparison to the bulk flow. Therefore, these vortices will play a major role in the heat transport in such flows.



https://doi.org/10.1063/5.0191403
Shekhawat, Deepshikha; Sindhani, Kashish; Raheja, Vishal Amarbhai; Baloochi, Mostafa; Isaac, Nishchay Angel; Pezoldt, Jörg
Modelling reaction transfer velocities in disconnected compact heterogeneous multilayer reactive material systems. - In: MRS advances, ISSN 2059-8521, Bd. 0 (2024), 0, S. 1-6

The tuning of the self-propagating reaction is studied theoretically by introducing a non-reactive material between two reactive material elements. For the study, the Ni/Al bilayer system was chosen. The Ni/Al elements were placed on a silicon wafer covered with a 1-µm-thick silicon dioxide. The spaces between the multilayer reactive material elements were filled with different non-reactive materials covering a wide range of thermal properties. On top of this heterogeneous layer, a 1-µm-thick sealing layer was placed consisting of the filler material. The carried out two-dimensional simulations demonstrated that embedding material allows to scale the ignition transfer time and the heat propagation velocity. For example, for a transfer length of 1 µm, the ignition time can be tuned from nano- to microseconds. Consequently, in contrast to previous results embedding materials allow scaling the properties of the self-propagating reaction in heterogeneous reactive material systems.



https://doi.org/10.1557/s43580-024-00822-3
Yang, Hong; Huang, Yuanyong; Luo, Bifu; Xie, Zhongkai; Li, Di; Xu, Dongbo; Lei, Yong; Shi, Weidong
Infrared light dual excitation of Ni-phytate-sensitized ZnIn2S4 with sulfur vacancies for enhanced NIR-driven photocatalysis. - In: Chemical communications, ISSN 1364-548X, Bd. 60 (2024), 8, S. 1035-1038

Near-infrared (NIR) light accounts for about half of the solar spectrum, and the effective utilization of low-energy NIR light is an important but challenging task in the field of photocatalysis. Molecular semiconductor photocatalytic systems (MSPSs) are highly tunable, available and stable, and are considered to be one of the most promising ways to achieve efficient NIR hydrogen production. Here, we demonstrate efficient dual-excitation in MSPS consisting of ZnIn2S4−x (ZIS1−x) with sulfur vacancies and phytic acid nickel (PA-Ni), which differs from other NIR-responsive photosensitized systems. The system achieves a hydrogen evolution reaction (HER) of 119.85 μmol h−1 g−1 at λ > 800 nm illumination, which is an excellent performance among all reported NIR catalysts and even outperforms the noble metal catalysts when compared to the reported literature. The superior activity is attributed to the unique charge dynamics and higher carrier concentration of the system. This work demonstrates the potential of dual-excitation systems for efficient utilization of low-energy NIR light.



https://doi.org/10.1039/D3CC05089K
Zhang, Yuanpeng; Cheng, Pengfei; Wang, Dong; Wang, Hui; Tang, Yongliang; Wang, Wei; Li, Yuhang; Sun, Zeqi; Lv, Wenmei; Liu, Qingxiang
Evaluating the field emission properties of N-type black silicon cold cathodes based on a three-dimensional model. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 16 (2024), 2, S. 2932-2939

Black silicon (BS), a nanostructured silicon surface containing highly roughened surface morphology, has recently emerged as a promising candidate for field emission (FE) cathodes in novel electron sources due to its huge number of sharp tips with ease of large-scale fabrication and controllable geometrical shapes. However, evaluating the FE performance of BS-based nanostructures with high accuracy is still a challenge due to the increasing complexity in the surface morphology. Here, we demonstrate a 3D modeling methodology to fully characterize highly disordered BS-based field emitters randomly distributed on a roughened nonflat surface. We fabricated BS cathode samples with different morphological features to demonstrate the validity of this method. We utilize parametrized scanning electron microscopy images that provide high-precision morphology details, successfully describing the electric field distribution in field emitters and linking the theoretical analysis with the measured FE property of the complex nanostructures with high precision. The 3D model developed here reveals a relationship between the field emission performance and the density of the cones, successfully reproducing the classical relationship between current density J and electric field E (J-E curve). The proposed modeling approach is expected to offer a powerful tool to accurately describe the field emission properties of large-scale, disordered nano cold cathodes, thus serving as a guide for the design and application of BS as a field electron emission material.



https://doi.org/10.1021/acsami.3c15402
Wu, Zhijun; Sha, Mo; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Ordered anodic aluminum oxide-based nanostructures for surface-enhanced Raman scattering: a review. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 7 (2024), 1, S. 11-31

As a promising spectroscopic technique, surface enhanced raman spectroscopy (SERS) has been intensively used in bio/chemical sensing, attributing to its unique advantages of ultrasensitive and accurate detection of trace amounts of analytes, high specific fingerprint-like features, fast response, and noninvasive sensing. The robustness and consistency of SERS signals in practical analytical applications highly rely on the composition, structural morphology, and uniformity of SERS substrates. These factors play a pivotal role in determining the intensity and reproducibility of the detected signals. SERS substrates based on ordered nanostructures that are fabricated from anodic aluminum oxide (AAO)-template-assisted approaches are of significant interest due to their cost effectiveness, scalability, precise structural control, and exceptionally ordered features. In this review, recent progress in SERS substrates with high sensitivity and reproducibility prepared from AAO templates is highlighted. We emphasize the optimization strategies toward achieving efficient SERS-active substrates by fine-tuning the size, composition, and morphology of AAO-derived ordered nanostructures. Furthermore, we delve into the discussion of flexible and smart SERS substrates, while also exploring key aspects pertinent to further amplifying SERS signals. Overall, this review aims to offer insights into the future integration of the AAO templates technique with SERS, providing crucial perspectives for forthcoming research in this field.



https://doi.org/10.1021/acsanm.3c04652
Skrickij, Viktor; Kojis, Paulius; Šabanovič, Eldar; Shyrokau, Barys; Ivanov, Valentin
Review of integrated chassis control techniques for automated ground vehicles. - In: Sensors, ISSN 1424-8220, Bd. 24 (2024), 2, 600, S. 1-40

Integrated chassis control systems represent a significant advancement in the dynamics of ground vehicles, aimed at enhancing overall performance, comfort, handling, and stability. As vehicles transition from internal combustion to electric platforms, integrated chassis control systems have evolved to meet the demands of electrification and automation. This paper analyses the overall control structure of automated vehicles with integrated chassis control systems. Integration of longitudinal, lateral, and vertical systems presents complexities due to the overlapping control regions of various subsystems. The presented methodology includes a comprehensive examination of state-of-the-art technologies, focusing on algorithms to manage control actions and prevent interference between subsystems. The results underscore the importance of control allocation to exploit the additional degrees of freedom offered by over-actuated systems. This paper systematically overviews the various control methods applied in integrated chassis control and path tracking. This includes a detailed examination of perception and decision-making, parameter estimation techniques, reference generation strategies, and the hierarchy of controllers, encompassing high-level, middle-level, and low-level control components. By offering this systematic overview, this paper aims to facilitate a deeper understanding of the diverse control methods employed in automated driving with integrated chassis control, providing insights into their applications, strengths, and limitations.



https://doi.org/10.3390/s24020600