Logo TU Ilmenau


Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel


Telefon +49 3677 / 69 2819

E-Mail senden




Facilitating Flexible Link Layer Protocols for Future Wireless Communication Systems

Dr.-Ing. Andre Puschmann
This dissertation addresses the problem of designing link layer protocols
which are flexible enough to accommodate the demands offuture wireless
communication systems (FWCS).We show that entire link layer protocols with
diverse requirements and responsibilities can be composed out of
reconfigurable and reusable components.We demonstrate this by designing and
implementinga novel concept termed Flexible Link Layer (FLL)
architecture.Through extensive simulations and practical experiments, we
evaluate a prototype of the suggested architecture in both
fixed-spectrumand dynamic spectrum access (DSA) networks.
FWCS are expected to overcome diverse challenges including the continual
growthin traffic volume and number of connected devices.Furthermore, they
are envisioned to support a widerange of new application requirements and
operating conditions.Technology trends, including smart homes,
communicating machines, and vehicularnetworks, will not only grow on a
scale that once was unimaginable, they will also become the predominant
communication paradigm, eventually surpassing today's human-produced
network traffic.
In order for this to become reality, today's systems have to evolve in many
ways.They have to exploit allocated resources in a more efficient and
energy-conscious manner.In addition to that, new methods for spectrum
access and resource sharingneed to be deployed.Having the diversification
of applications and network conditions in mind, flexibility at all layers
of a communication system is of paramount importance in order to meet the
desired goals.
However, traditional communication systems are often designed with specific
and distinct applications in mind. Therefore, system designers can tailor
communication systems according to fixedrequirements and operating
conditions, often resulting in highly optimized but inflexible
systems.Among the core problems of such design is the mix of data transfer
and management aspects.Such a combination of concerns clearly hinders the
reuse and extension of existing protocols.
To overcome this problem, the key idea explored in this dissertation is a
component-based design to facilitate the development of more flexible and
versatile link layer protocols.Specifically, the FLL architecture,
suggested in this dissertation, employs a generic, reconfigurable data
transfer protocol around which one or more complementary protocols, called
link layer applications, are responsible for management-related aspects of
the layer.
To demonstrate the feasibility of the proposed approach, we have designed
andimplemented a prototype of the FLL architecture on the basis ofa
reconfigurable software defined radio (SDR) testbed.Employing the SDR
prototype as well as computer simulations, thisdissertation describes
various experiments used to examine a range of link layerprotocols for both
fixed-spectrum and DSA networks.
This dissertation firstly outlines the challenges faced by FWCSand
describes DSA as a possible technology component for their construction.It
then specifies the requirements for future DSA systemsthat provide the
basis for our further considerations.We then review the background on link
layer protocols, surveyrelated work on the construction of flexible
protocol frameworks,and compare a range of actual link layer protocols and
algorithms.Based on the results of this analysis, we design, implement, and
evaluatethe FLL architecture and a selection of actual link layer
We believe the findings of this dissertation add substantively to the
existing literature on link layer protocol design and are valuable for
theoreticians and experimentalists alike.
Weiterführender Link