http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. rer. nat. habil. Matthias Kriesell

Institutsdirektor

Telefon +49 3677 69-3633

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Veröffentlichungen am Institut für Mathematik seit 1990

Anzahl der Treffer: 1161
Erstellt: Tue, 10 Dec 2019 23:09:56 +0100 in 0.0335 sec


Fabrici, Igor; Harant, Jochen; Mohr, Samuel; Schmidt, Jens M.;
Longer cycles in essentially 4-connected planar graphs. - In: Discussiones mathematicae - Warsaw : De Gruyter Open, ISSN 2083-5892, Bd. 40 (2020), 1, S. 269-277

https://dx.doi.org/10.7151/dmgt.2133
Leben, Florian;
Operatortheorie für PT-symmetrische Quantenmechanik - Ilmenau : Universitätsbibliothek, 2019 - 1 Online-Ressource (88 Seiten).
Technische Universität Ilmenau, Dissertation 2019

Eine Verallgemeinerung der klassischen Quantenmechanik stammt von C. M. Bender und S. Boettcher welche alle Axiome der Quantenmechanik übernahmen, außer der Bedingung, dass der Hamiltonoperator Hermitesch ist. Sie fordern stattdessen, dass der Hamiltonoperator PT-symmetrisch ist. Hier sind P beziehungsweise T die Parität und die Zeitumkehr. Besonderes Augenmerk liegt auf den speziellen Hamiltonoperatoren $$H = p^2 - (iz)^{N+2}, z \in \Gamma$$ auf einer Kontur \Gamma und mit einer natürlichen Zahl N. In der vorliegenden Arbeit behandeln wir die Operatoren H, sowie Hamiltonoperatoren mit einem allgemeineren PT-symmetrischen Potential q, erklärt auf einer keilförmigen Kontur \Gamma. Das dazugehörige Eigenwertproblem hat nach einer Parametrisierung der Kontur die Gestalt $$e^{\mp 2i\phi}w''(x) + q_{\pm}(x)w(x) = \lambda w(x), x \in R_{\pm}.$$ Für das zu H gehörige Problem gilt q_{\pm}(x) = -(ix)^{N+2}e^{\pm(N+2)i\phi}. Dies sind Sturm-Liouville Differentialgleichung auf (-\infty, 0] und [0,\infty), welche wir mit operatortheoretischen Methoden behandeln. Wir geben, mittels WKB-Analysis ein Grenzpunktfallkriterium an und für das spezielle Potential aus H eine vollständige Klassifikation bezüglich der Weylschen Grenzpunkt-/Grenzkreisfall Alternative. Wir definieren die zu den obigen Differentialgleichungen gehörenden minimalen und maximalen Operatoren, welche zueinander adjungiert bezüglich der komplexen Konjugation sind. Diese Operatoren sind auf den reellen Halbachsen definiert und wir fügen diese zu dem minimalen und maximalen Operator auf der ganzen Achse zusammen, die wiederum zueinander adjungiert bezüglich des neuen inneren Produktes [\cdot, \cdot] := (P\cdot, \cdot) sind. Mithilfe einer Kopplungsbedingung G \in C^{2×2} in Null erhalten wir den Operator A_G, eine Einschränkung des maximalen Operators. Diese Bedingung besitzt Freiheitsgrade und wir geben Bedingungen an G an, sodass A_G PT-symmetrisch oder [\cdot, \cdot]-selbstadjungiert ist. Dafür konstruieren wir ein Randtripel. Außerdem berechnen wir die Weyl-Funktion und erhalten somit eine Bedingung für die Existenz und Lage der Eigenwerte von A_G. Mithilfe der WKB-Analysis untersuchen wir diese Bedingung und können Bereiche der komplexen Ebene ausschließen, in denen sich kein Spektrum befindet. Ferner besitzt A_G strukturell dieselben Spektraleigenschaften wie die entsprechenden Operatoren auf den Halbachsen.



https://www.db-thueringen.de/receive/dbt_mods_00040253
Harant, Jochen; Jendrol', Stanislav;
Lightweight paths in graphs. - In: Opuscula mathematica : semiannual. - Kraków : AGH Univ. of Science and Technology Press, Bd. 39 (2019), 6, S. 623-649

https://doi.org/10.7494/OpMath.2019.39.6.829
Gernandt, Hannes;
Locating the extremal entries of the Fiedler vector for rose trees. - In: Proceedings in applied mathematics and mechanics : PAMM. - Weinheim [u.a.] : Wiley-VCH, ISSN 1617-7061, Volume 19 (2019), issue 1, e201900408, 2 Seiten

https://doi.org/10.1002/pamm.201900408
Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten;
The non-real spectrum of a singular indefinite Sturm-Liouville operator with regular left endpoint. - In: Proceedings in applied mathematics and mechanics : PAMM. - Weinheim [u.a.] : Wiley-VCH, ISSN 1617-7061, Volume 19 (2019), issue 1, e201900133, 2 Seiten

https://doi.org/10.1002/pamm.201900201
Zimmermann, Armin; Hotz, Thomas;
Integrating simulation and numerical analysis in the evaluation of generalized stochastic Petri nets. - In: ACM transactions on modeling and computer simulation : TOMACS. - New York, NY : ACM Press, ISSN 1558-1195, Bd. 29 (2019), 4, S. 24:1-24:25

https://dx.doi.org/10.1145/3321518
Baier, Robert; Eichfelder, Gabriele; Gerlach, Tobias;
Optimality conditions for set optimization using a directional derivative based on generalized Steiner sets - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019 - 1 Online-Ressource (40 Seiten). . - (Preprint. - M19,09)

Set-optimization has attracted increasing interest in the last years, as for instance uncertain multiobjective optimization problems lead to such problems with a set- valued objective function. Thereby, from a practical point of view, most of all the so-called set approach is of interest. However, optimality conditions for these problems, for instance using directional derivatives, are still very limited. The key aspect for a useful directional derivative is the definition of a useful set difference for the evaluation of the numerator in the difference quotient. We present here a new set difference which avoids the use of a convex hull and which applies to arbitrary convex sets, and not to strictly convex sets only. The new set difference is based on the new concept of generalized Steiner sets. We introduce the Banach space of generalized Steiner sets as well as an embedding of convex sets in this space using Steiner points. In this Banach space we can easily define a difference and a directional derivative. We use the latter for new optimality conditions for set optimization. Numerical examples illustrate the new concepts.



https://www.db-thueringen.de/receive/dbt_mods_00040057
Preißer, Johanna E.; Schmidt, Jens M.;
Computing vertex-disjoint paths in large graphs using MAOs. - In: Algorithmica : an international journal in computer science. - New York, NY : Springer, ISSN 1432-0541, (2019), insges. 17 S.
First Online: 17 July 2019

https://doi.org/10.1007/s00453-019-00608-2
Eichfelder, Gabriele; Gerlach, Tobias;
On classes of set optimization problems which are reducible to vector optimization problems and its impact on numerical test instances. - In: Variational analysis and set optimization - Boca Raton : CRC Press, (2019), S. 265-290

Set optimization with the set approach has recently gained increasing interest due to its practical relevance. In this problem class one studies optimization problems with a set-valued objective map and defines optimality based on a direct comparison of the images of the objective function, which are sets here. Meanwhile, in the literature a wide range of theoretical tools as scalarization approaches and derivative concepts as well as first numerical algorithms are available. These numerical algorithms require on the one hand test instances where the optimal solution sets are known. On the other hand, in most examples and test instances in the literature only set-valued maps with a very simple structure are used. We study in this paper such special set-valued maps and we show that some of them are such simple that they can equivalently be expressed as a vector optimization problem. Thus we try to start drawing a line between simple set-valued problems and such problems which have no representation as multiobjective problems. Those having a representation can be used for defining test instances for numerical algorithms with easy verifiable optimal solution set.



Leben, Florian; Trunk, Carsten;
Operator-based approach to PT-symmetric problems on a wedge-shaped contour. - In: Quantum studies : mathematics and foundations. - Berlin : Springer, ISSN 2196-5617, Bd. 6 (2019), 3, S. 315-333

https://doi.org/10.1007/s40509-019-00197-3