http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. rer. nat. habil. Matthias Kriesell

Institutsdirektor

Telefon +49 3677 69-3633

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Veröffentlichungen am Institut für Mathematik seit 1990

Anzahl der Treffer: 1141
Erstellt: Tue, 25 Jun 2019 23:04:36 +0200 in 0.0355 sec


Müller, Matthias A.; Worthmann, Karl;
Quadratic costs do not always work in MPC. - In: Automatica : a journal of IFAC, the International Federation of Automatic Control. - Amsterdam [u.a.] : Elsevier, Pergamon Press, ISSN 0005-1098, Bd. 82 (2017), S. 269-277

https://doi.org/10.1016/j.automatica.2017.04.058
Fleige, Andreas; Winkler, Henrik;
An indefinite inverse spectral problem of Stieltjes type. - In: Integral equations and operator theory : IEOT. - Berlin : Springer, ISSN 1420-8989, Bd. 87 (2017), 4, S. 491-514

https://doi.org/10.1007/s00020-017-2358-x
Gernandt, Hannes; Trunk, Carsten;
Eigenvalue placement for regular matrix pencils with rank one perturbations. - In: SIAM journal on matrix analysis and applications - Philadelphia, Pa : Soc, ISSN 1095-7162, Bd. 38 (2017), 1, S. 134-154

http://dx.doi.org/10.1137/16M1066877
Bao, Truong Quang; Eichfelder, Gabriele; Soleimani, Behnam; Tammer, Christiane;
Ekeland's variational principle for vector optimization with variable ordering structure. - In: Journal of convex analysis - Lemgo : Heldermann, ISSN 09446532, Bd. 24 (2017), 2, S. 393-415

There are many generalizations of Ekeland's variational principle for vector optimization problems with fixed ordering structures, i.e., ordering cones. These variational principles are useful for deriving optimality conditions, [epsilon]-Kolmogorov conditions in approximation theory, and [epsilon]-maximum principles in optimal control. Here, we present several generalizations of Ekeland's variational principle for vector optimization problems with respect to variable ordering structures. For deriving these variational principles we use nonlinear scalarization techniques. Furthermore, we derive necessary conditions for approximate solutions of vector optimization problems with respect to variable ordering structures using these variational principles and the subdifferential calculus by Mordukhovich.



Ilchmann, Achim; Reis, Timo
. - Surveys in differential-algebraic equations ; 4 - Cham : Springer, 2017 - ix, 305 Seiten. . - (Differential-algebraic equations forum)
http://www.gbv.de/dms/ilmenau/toc/884524973.PDF
Kriesell, Matthias;
Unique colorability and clique minors. - In: Journal of graph theory - New York, NY [u.a.] : Wiley, ISSN 1097-0118, Bd. 85 (2017), 1, S. 207-216

https://doi.org/10.1002/jgt.22056
Stiebitz, Michael;
A relaxed version of the Erd˝os-Lovász Tihany conjecture. - In: Journal of graph theory - New York, NY [u.a.] : Wiley, ISSN 1097-0118, Bd. 85 (2017), 1, S. 278-287

https://doi.org/10.1002/jgt.22060
Jacob, Birgit; Tretter, Christiane; Trunk, Carsten; Vogt, Hendrik;
Numerical range and quadratic numerical range for damped systems - Ilmenau : Technische Universität, Institut für Mathematik, 2017 - 1 Online-Ressource (27 Seiten). . - (Preprint. - M17,05)

We prove new enclosures for the spectrum of non-selfadjoint operator matrices associated with second order linear differential equations z'' (t) + D z' (t) + A_0 z(t) = 0 in a Hilbert space. Our main tool is the quadratic numerical range for which we establish the spectral inclusion property under weak assumptions on the operators involved; in particular, the damping operator only needs to be accretive and may have the same strength as A_0. By means of the quadratic numerical range, we establish tight spectral estimates in terms of the unbounded operator coefficients A_0 and D which improve earlier results for sectorial and selfadjoint D; in contrast to numerical range bounds, our enclosures may even provide bounded imaginary part of the spectrum or a spectral free vertical strip. An application to small transverse oscillations of a horizontal pipe carrying a steady-state flow of an ideal incompressible fluid illustrates that our new bounds are explicit.



https://www.db-thueringen.de/receive/dbt_mods_00031984
Ilchmann, Achim; Reis, Timo;
Outer transfer functions of differential-algebraic systems. - In: Control, optimisation and calculus of variations : COCV. - Les Ulis : EDP Sciences, ISSN 12623377, Bd. 23 (2017), 2, S. 391-425

https://doi.org/10.1051/cocv/2015051
Hildenbrandt, Regina;
The k-server problem with parallel requests and the compound work function algorithm - Ilmenau : Technische Universität, Institut für Mathematik, 2017 - 1 Online-Ressource (20 Seiten). . - (Preprint. - M17,04)

In this paper we consider k-server problems with parallel requests where several servers can also be located on one point. We will distinguish the surplussituation where the request can be completely fulfilled by means of the k servers and and the scarcity-situation where the request cannot be completely met. First, we will give an example. It shows that the corresponding work function algorithm is not competitive in the case of the scarcity-situation. Until now, it remains an open question whether the work function algorithm is competitive or not in the case of the surplus-situation. Thats why, we will suggest the new "compound work function algorithm" in the following section and prove that this algorithm is also (2 k - 1)-competitive.



https://www.db-thueringen.de/receive/dbt_mods_00031742