Logo TU Ilmenau

Foto des Ansprechpartners

Prof. Dr. rer. nat. habil. Matthias Kriesell


Telefon +49 3677 69-3633

E-Mail senden

Ihre Position



Veröffentlichungen am Institut für Mathematik seit 1990

Anzahl der Treffer: 1182
Erstellt: Mon, 06 Apr 2020 23:08:26 +0200 in 0.0443 sec

Kratochvíl, Jan; Tuza, Zsolt; Voigt, Margit
Brooks-type theorems for choosability with separation. - In: Journal of graph theory. - New York, NY [u.a.] : Wiley, ISSN 1097-0118, Bd. 27 (1998), 1, S. 43-49<43::AID-JGT7>3.0.CO;2-G
Fabricius, Alexander; Breternitz, Volkmar; Knedlik, Christian; Henning, Andreas; Liebscher, Eckhard; Vogel, Silvia
Investigations of electromigration failure by electrical measurement and scanning probe microscopy with additional simulation. - In: Materials reliability in microelectronics VIII. - Warrendale, Pa. : Materials Research Soc., (1998), S. 27-32

Steigenberger, Joachim;
Mathematical approach to worm-like locomotion. - In: Motion systems. - Stuttgart [u.a.] : Fischer, (1998), S. 114-115

Abeßer, Harald; Katzschmann, Michael; Steigenberger, Joachim
Time variant global stabilization of a mobile robot. - In: Variational calculus, optimal control and applications. - Basel [u.a.] : Birkhäuser, (1998), S. 235-240

Liebscher, Eckhard;
On a class of plug-in methods of bandwidth selection for kernel density estimators. - In: Statistics & decisions. - München : Oldenbourg, ISSN 0721-2631, Bd. 16 (1998), S. 229-243

Liebscher, Eckhard;
Convergence of hermite series density estimators under conditions of weak dependence. - In: Statistics. - Abingdon, Oxon [u.a.] : Taylor & Francis, ISSN 0233-1888, Bd. 31 (1998), 3, S. 191-214

Neundorf, Werner;
Gewöhnliche Differentialgleichungen : Beispiele, Modelle, Verfahren, Software. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1998. - 60 S. = 495,1 KB. . - (Preprint. - M98,11)
Büntig, Wolfgang G.; Vogt, Werner
Nonlinear circuit models for the analysis of energetic systems : 43rd international scientific colloquium, Ilmenau, 21 - 24 September 1998. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1998. - 12 S. = 731,5 KB. . - (Preprint. - M98,24)
Vogt, Werner;
Zur Konstruktion von Differenzenverfahren 2. Ordnung für quasilineare hyperbolische Systeme auf dem Torus. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1998. - 22 S. = 283,5 KB. . - (Preprint. - M98,28)
Ginchev, Ivan; Hoffmann, Armin
The Hausdorff nearest circle to a convex compact set in the plane. - In: Zeitschrift für Analysis und ihre Anwendungen. - Berlin : EMS Publishing House, ISSN 0232-2064, Bd. 17 (1998), 2, S. 479-499

The problem of finding the nearest in the Hausdorff metric circle to a non-empty convex compact set T in the plane is considered from geometrical point of view. The consideration is based on the equivalence of this problem with the Chebyshevian best approximation of 2*pi-periodic functions by trigonometric polynomials of first order, whence it follows that the Hausdorff nearest circle to a convex compact set in the plane exists and is unique. It can be characterized by a geometric Chebyshevian alternance. As a consequence in the particular case of a polygon the centre of the circle is described as an intersection of a midline between some two vertices and a bisectrix of some two sides. In the general case geometrical algorithms corresponding to the one and the four point exchange Remez algorithms are described. They assure correspondingly linear and superlinear convergence. Following the idea, in the case of a polygon to get the exact solution in finite number of steps, a modified two point exchange algorithm is suggested and illustrated by a numerical example. An application is given to estimate the Hausdorff distance between an arbitrary convex set and its Hausdorff nearest circle. The considered problem arises as a practical problem by measuring and pattern recognition in the production of circular machine parts.