http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. rer. nat. habil. Matthias Kriesell

Institutsdirektor

Telefon +49 3677 69-3633

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Veröffentlichungen am Institut für Mathematik seit 1990

Anzahl der Treffer: 1177
Erstellt: Wed, 26 Feb 2020 23:08:02 +0100 in 0.0351 sec


Böhme, Thomas; Broersma, H. J.; Veldman, H. J.
Toughness and longest cycles in 2-connected planar graphs. - In: Journal of graph theory. - New York, NY [u.a.] : Wiley, ISSN 1097-0118, Bd. 23 (1996), 3, S. 257-263

http://dx.doi.org/10.1002/(SICI)1097-0118(199611)23:3<257::AID-JGT5>3.0.CO;2-R
Stiebitz, Michael;
Decomposing graphs under degree constraints. - In: Journal of graph theory. - New York, NY [u.a.] : Wiley, ISSN 1097-0118, Bd. 23 (1996), 3, S. 321-324

http://dx.doi.org/10.1002/(SICI)1097-0118(199611)23:3<321::AID-JGT12>3.0.CO;2-H
John, Peter E.; Schild, Göran
Calculating the characteristic polynomial and the eigenvectors of a tree. - In: Match. - Kragujevac : Univ. [u.a.], ISSN 0340-6253, Bd. 34 (1996), S. 217-237

Liebscher, Eckhard;
Strong convergence of sums of α-mixing random variables with applications to density estimation. - In: Stochastic processes and their applications. - Amsterdam [u.a.] : Elsevier, Bd. 65 (1996), 1, S. 69-80

http://dx.doi.org/10.1016/S0304-4149(96)00096-8
Liebscher, Eckhard;
Central limit theorems for sums of a-mixing random variables. - In: Stochastics and stochastics reports. - Abingdon : Taylor & Francis, ISSN 1045-1129, Bd. 59 (1996), 3/4, S. 241-258

Lutter, Thomas; Neundorf, Werner
3D-Darstellung von Funktionen. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1996. - 23 S. = 326,5 KB. . - (Preprint. - M96,04)
http://www.db-thueringen.de/servlets/DocumentServlet?id=6110
Neundorf, Werner;
Mathematica - Postscript - TEX. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1996. - 30 S. = 479,0 KB. . - (Preprint. - M96,07)
http://www.db-thueringen.de/servlets/DocumentServlet?id=6109
Neundorf, Werner;
Behandlung großer Matrizen auf dem PC. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1996. - 34 S. = 360,2 KB. . - (Preprint. - M96,11)
http://www.db-thueringen.de/servlets/DocumentServlet?id=6107
Neundorf, Werner;
Grundlagen, Norm, Kondition und Skalierung. - Manipulation von Matrizen ; Teil 1. - Ilmenau : Techn. Univ., Inst. für Mathematik, 1996. - 35 S. = 392,1 KB. . - (Preprint. - M96,16)
http://www.db-thueringen.de/servlets/DocumentServlet?id=6106
Phu, Hoang Xuan; Hoffmann, Armin
Essential supremum and supremum of summable functions. - In: Numerical functional analysis and optimization. - Philadelphia, Pa. : Taylor & Francis, ISSN 0163-0563, Bd. 17 (1996), 1/2, S. 167-180

Let D be a subset of R^n with positive finite Lebesgue measure and f on D an arbitrary real summable function. Then the function F of a, defined by the integral of f - a over all x of D with f(x) larger as or equal to a, is continuous, non-negative, non-increasing, convex, and has almost everywhere the measure of the level set as derivative F'(a). Further on, it holds that the essential supremum of f is given by the supremum of all a with F(a)>0. These properties can be used for computing the essential supremum of f. As example, two algorithms are stated. If the function f is dense, or lower semicontinuous, or if -f is robust, then supremum and the essential supremum of f coincide. In this case, the algorithms mentioned can be applied for determining the supremum of f, i.e., also the global maximum of f if it exists.