http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. rer. nat. habil. Matthias Kriesell

Institutsdirektor

Telefon +49 3677 69-3633

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Veröffentlichungen am Institut für Mathematik seit 1990

Anzahl der Treffer: 1141
Erstellt: Wed, 26 Jun 2019 11:17:05 +0200 in 0.0364 sec


Schmid, Andreas; Schmidt, Jens M.;
Computing 2-walks in polynomial time. - In: ACM transactions on algorithms : TALG. - New York, NY, ISSN 1549-6333, Bd. 14 (2018), 2, Article No. 22, insges. 18 S.
An extended abstract of this article was published in STACS 2015

https://doi.org/10.1145/3183368
Berger, Thomas; Gernandt, Hannes; Trunk, Carsten; Winkler, Henrik; Wojtylak, Michał;
The gap distance to the set of singular matrix pencils - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018 - 1 Online-Ressource (22 Seiten). . - (Preprint. - M18,05)

We study matrix pencils sE-A using the associated linear subspace ker[A,-E]. The distance between subspaces is measured in terms of the gap metric. In particular, we investigate the gap distance of a regular matrix pencil to the set of singular pencils and provide upper and lower bounds for it. A relation to the distance to singularity in the Frobenius norm is provided.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018200051
Thomann, Jana; Eichfelder, Gabriele;
A trust region algorithm for heterogeneous multiobjective optimization - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018 - 1 Online-Ressource (30 Seiten). . - (Preprint. - M18,04)
http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018200043
Niebling, Julia; Eichfelder, Gabriele;
A branch-and-bound based algorithm for nonconvex multiobjective optimization - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018 - 1 Online-Ressource (29 Seiten). . - (Preprint. - M18,03)
http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2018200024
Knobloch, Jürgen; Lamb, Jeroen S. W.; Webster, Kevin N.;
Shift dynamics near non-elementary T-points with real eigenvalues. - In: Journal of difference equations and applications - London [u.a.] : Taylor & Francis, ISSN 1563-5120, Bd. 24 (2018), 4, S. 609-654

https://doi.org/10.1080/10236198.2017.1331890
Hassi, Seppo; Snoo, Henk; Winkler, Henrik;
Limit properties of eigenvalues in spectral gaps. - In: Indefinite inner product spaces, Schur analysis, and differential equations : a volume dedicated to Heinz Langer. - Cham : Birkhäuser, ISBN 978-3-319-68849-7, (2018), S. 335-355

https://doi.org/10.1007/978-3-319-68849-7_13
Brechtken, Stefan; Sasse, Thomas;
Normal, high order discrete velocity models of the Boltzmann equation. - In: Computers and mathematics with applications : an international journal. - Amsterdam [u.a.] : Elsevier Science, Bd. 75 (2018), 2, S. 503-519

https://doi.org/10.1016/j.camwa.2017.09.024
Braun, Philipp; Faulwasser, Timm; Grüne, Lars; Kellett, Christopher M.; Weller, Steven R.; Worthmann, Karl;
Hierarchical distributed ADMM for predictive control with applications in power networks. - In: IFAC journal of systems and control - Amsterdam : Elsevier Ltd, ISSN 24686018, Bd. 3 (2018), S. 10-22

https://doi.org/10.1016/j.ifacsc.2018.01.001
Mnich, Matthias; Rutter, Ignaz; Schmidt, Jens M.;
Linear-time recognition of map graphs with outerplanar witness. - In: Discrete optimization - New York, NY [u.a.] : Elsevier, Bd. 28 (2018), S. 63-77

https://doi.org/10.1016/j.disopt.2017.12.002
Eichfelder, Gabriele; Gerlach, Tobias;
On classes of set optimization problems which are reducible to vector optimization problems and its impact on numerical test instances - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018 - 1 Online-Ressource (25 Seiten). . - (Preprint. - M18,01)

Set optimization with the set approach has recently gained increasing interest due to its practical relevance. In this problem class one studies optimization problems with a set-valued objective map and defines optimality based on a direct comparison of the images of the objective function, which are sets here. Meanwhile, in the literature a wide range of theoretical tools as scalarization approaches and derivative concepts as well as first numerical algorithms are available. These numerical algorithms require on the one hand test instances where the optimal solution sets are known. On the other hand, in most examples and test instances in the literature only set-valued maps with a very simple structure are used. We study in this paper such special set-valued maps and we show that some of them are such simple that they can equivalently be expressed as a vector optimization problem. Thus we try to start drawing a line between simple set-valued problems and such problems which have no representation as multiobjective problems. Those having a representation can be used for defining test instances for numerical algorithms with easy verifiable optimal solution set.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017200588