http://www.tu-ilmenau.de

Logo TU Ilmenau


Arbeitsgruppe Optimierung



Ansprechpartner

Gabriele Eichfelder

Telefon +49 3677 69-3628

E-Mail senden



INHALTE

Abschlussarbeiten

Anzahl der Treffer: 21
Erstellt: Sat, 19 Aug 2017 23:03:22 +0200 in 0.0432 sec


Wu, Liru
Richtungsableitungen und Taylor-Formel für mengenwertige Abbildungen. - Ilmenau. - 50 Seiten
Technische Universität Ilmenau, Masterarbeit, 2017

Die vorliegende Masterarbeit stellt einige grundlegende Konzepte der mengenwertigen Optimierung mit dem Mengenzugang vor. Es wird eine spezielle Mengendifferenz und -addition eingeführt und darauf aufbauend eine Richtungsableitung und eine Taylor-Formel für mengenwertige Abbildungen. Es wurden Algorithmen zur Berechnung dieser Konzepte entwickelt, mit Matlab implementiert, und an verschiedenen mengenwertigen Abbildungen getestet.


http://www.gbv.de/dms/ilmenau/abs/895573717wu.txt
Wieditz, Johannes
Berechnung von Fréchet-Mittelwerten auf Sphären. - Ilmenau. - 86 Seiten
Technische Universität Ilmenau, Masterarbeit, 2017

Die Minimierung von Abständen zu einer gegebenen Menge von Punkten ist eine wichtige Aufgabe in der Logistik. Gerade bei mehreren gegebenen Punkten besteht dabei ein Zielkonflikt zwischen den gegebenen Daten, wenn ein kürzerer Abstand zu einem Punkt eine längere Distanz zu einem anderen zur Folge hat. Daher geht man oftmals dazu über, den mittleren Abstand zu allen gegebenen Punkten zu minimieren. Mathematisch wird diese Problemstellung durch die Ermittlung von sogenannten Fréchet-Mittelwerten modelliert, deren explizite Berechnung sich als schwierig erweisen kann. Diese Abschlussarbeit befasst sich mit einem Verfahren zur Approximation von Fréchet-Mittelwerten auf dem Einheitskreis und der Einheitssphäre. Hierzu benutzen wir einen modifizierten Branch-and-Bound-Algorithmus. Die benötigten unteren Schranken und Unterteilungsvorschriften werden dazu hergeleitet und erstere mit einem bekannten Ansatz aus dem Bereich der Lipschitz-Optimierung verglichen. Die konstruierten Verfahren werden anschließend unter numerischen Gesichtspunkten untersucht, gegenübergestellt und abschließend an Anwendungsbeispielen getestet.


http://www.gbv.de/dms/ilmenau/abs/881653462wiedi.txt
Rocktäschel, Stefan
Ein Algorithmus zur Bestimmung einer Lösungsüberdeckung spezieller mengenwertiger Optimierungsprobleme. - 78 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

Diese Bachelorarbeit beschäftigt sich mit speziellen mengenwertigen Optimierungsproblemen, die beispielsweise zur Lösung boxbeschränkter, robuster, multikriterieller Optimierungsprobleme genutzt werden können. Letztere treten häufig in Ingenieurs- und Wirtschaftswissenschaften auf und werden durch Worst-Case-Optimierung motiviert. Zunächst werden in der Arbeit theoretische Grundlagen zur mengenwertigen Optimierung gelegt und anschließend wird die Grundidee eines Algorithmus zur Bestimmung einer Überdeckung der Lösungsmenge der mengenwertigen Optimierungsprobleme vorgestellt. Dabei wird mithilfe von oberen und unteren Schranken überprüft, ob Teilboxen Lösungen enthalten können. Der wichtigste Aspekt ist daher, möglichst gute Schranken für diese Teilboxen zu finden, weshalb in dieser Arbeit unter anderem neue Methoden dazu vorgestellt werden. Der beschriebene Algorithmus wurde in MATLAB implementiert und anhand von Testbeispielen ausführlich getestet.


http://www.gbv.de/dms/ilmenau/abs/876432798rockt.txt
Burgardt, Carolin
Mengenoptimierung mit Zielfunktionen von spezieller Struktur. - 37 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

Diese Bachelorarbeit befasst sich mit dem Thema der Mengenoptimierung mithilfe des Mengenzugangs, bei dem Mengen im Bildraum als Ganzes miteinander verglichen werden. Dabei finden drei verschiedene Mengenrelationen Anwendung. Es werden spezielle Mengenoptimierungsprobleme betrachtet, bei denen die Bilder der Zielfunktionen einfache geometrische Formen haben wie Kreise oder Rechtecke. Für manche dieser Probleme wurde gezeigt, dass sie in ein äquivalentes multikriterielles Optimierungsproblem und damit in ein einfacher zu lösendes Optimierungsproblem überführt werden können.


http://www.gbv.de/dms/ilmenau/abs/874150205burgh.txt
Kohl, Stefan
Continuous reformulations of binary quadratic programs. - 46 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

Diese Arbeit beschäftigt sich mit binären quadratischen Optimierungsproblem und zugehörigen kontinuierlichen Mengen-semidefiniten Relaxierungen, die unter bestimmten Bedingungen äquivalent sind. Zu diesem Zweck wird der dabei genutzte Mengen-semidefinite Kegel untersucht, indem die Menge, über der er definiert ist, als endlich erzeugter Kegel aufgefasst wird. Des weiteren wird das duale Problem zum relaxierten Optimierungsproblem aufgestellt. Zum Abschluss bietet diese Arbeit einen Ausblick auf Möglichkeiten, eine ähnliche Relaxierung auch mit gemischt-binären quadratischen Optimierungsproblemen durchzuführen.


http://www.gbv.de/dms/ilmenau/abs/860782611kohl.txt
Niebling, Julia
Ein Branch-and-Bound-Verfahren für bikriterielle Optimierungsprobleme. - 75 S.
Ilmenau : Techn. Univ., Masterarbeit, 2015

Diese Masterarbeit beschäftigt sich mit einem Branch-and-Bound-Algorithmus für bikriterielle boxbeschränkte Optimierungsprobleme. Derartige Probleme treten zum Beispiel in den Ingenieur- oder Wirtschaftwissenschaften häufig auf. Dabei interessiert man sich für die globalen Lösungen. Nach der Bereitstellung der theoretische Grundlagen, werden die Idee und prinzipiellen Schritte für den Algorithmus vorgestellt, der eine Approximation der Lösungsmenge liefert. Dafür müssen sogenannte Auswahl-, Verwerfungs- und Abbruchkriterien entwickelt werden. Die Verwerfungskriterien sind dabei ein besonders wichtiger Aspekt. Diese untersuchen mit unterschiedlichen Methoden, ob eine Box optimale Lösungen enthalten kann. Das Kriterium, welches den Idealpunkt und den $\alpha$BB-Ansatz nutzt, wird in dieser Arbeit verbessert. Der beschriebene Algorithmus wurde in MATLAB implementiert und anhand von bekannten Testfunktionen ausführlich numerisch getestet.


http://www.gbv.de/dms/ilmenau/abs/845452355niebl.txt
Thomann, Jana
Decomposed descent methods in multiobjective optimization. - 74 S.
Ilmenau : Techn. Univ., Masterarbeit, 2015

In vielen Anwendungsbereichen der multikriteriellen Optimierung treten heterogene Zielfunktionen auf. Diese Heterogenität kann beispielsweise in der Berechnungszeit liegen. In den bisherigen Methoden der multikriteriellen Optimierung zur Berechnung effizienter Punkte werden mögliche Unterschiede der Zielfunktionen jedoch nicht berücksichtigt. Deshalb werden in der vorliegenden Masterarbeit erste Ansätze untersucht, die mögliche Heterogenität der Zielfunktionen einzubeziehen. Dabei beschränken sich die Betrachtungen auf bikriterielle Optimierungsprobleme. Zwei der drei untersuchten Ansätze wurden in Matlab implementiert und an selbst gewählten Testfunktionen getestet.


http://www.gbv.de/dms/ilmenau/abs/844222917thoma.txt
Frey, Jonathan
Der Direct-Algorithmus und seine Anwendbarkeit in der multikriteriellen Optimierung. - 72 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2015

In meiner Bachelorarbeit befasse ich mich mit dem Direct-Algorithmus, den D.R. Jones, C.D. Perttunen und B.E. Stuckman 1993 in "Lipschitzian optimization without the Lipschitz constant" vorgestellt haben. Der Algorithmus wird zunächst erläutert und diskutiert. Daraufhin stelle ich einige auf Direct beruhende Ansätze, um die effiziente Menge von multikriteriellen Optimierungsproblemen zu approximieren, vor. Diese habe ich implementiert und an Testproblemen getestet. In Teilen der Arbeit beschränke ich mich auf bikriterielle Probleme.


http://www.gbv.de/dms/ilmenau/abs/833991159frey.txt
Sumi, Susanne
Modifikation der alphaBB-Methode für die inverse Kinematik von Roboterarmen. - 92 S.
Ilmenau : Techn. Univ., Masterarbeit, 2014

In dieser Arbeit wurde das Problem der inversen Kinematik für Roboterarme als Optimierungsproblem formuliert. Es ergibt sich ein globales Optimierungsproblem, welches mehrere oder sogar unendlich viele globale Minimalstellen hat. Unendlich viele globale Minimalstellen treten bei Roboterarmen mit redundanter Struktur und an singulären Stellungen auf. Für die Anwendung ist es sinnvoll, alle globalen Minimalstellen zu kennen. Zur Lösung dieses Optimierungsproblems wurde die aus der Literatur bekannte alphaBB-Methode erweitert. Mit Hilfe dieses modifizierten Optimierungsverfahrens können von box-restringierten, zweimal stetig differenzierbaren Optimierungsproblemen alle globalen Minimalstellen approximiert werden, unabhängig davon, ob es endlich oder unendlich viele globale Minimalstellen gibt. Es wurde die Korrektheit und Endlichkeit des entwickelten Verfahrens bewiesen.


http://www.gbv.de/dms/ilmenau/abs/800969073sumi.txt
Fabel, Marc
Analyse eines MINLP-Problems in der Kraftwerkseinsatzplanung. - 35 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2014

In der Kraftwerkseinsatzplanung gibt es nach der Liberalisierung der Energiemärkte viel zu beachten, wodurch die Optimierungsprobleme in diesem Bereich an Komplexität gewinnen. Somit ist es von Nöten die vielen Facetten der Kraftwerkseinsatzplanung in ein gemischt-ganzzahliges nichtlineares Optimierungsproblem umzuwandeln, um dies mit entsprechenden Solvern lösen zu können. In dieser Bachelorarbeit haben wir nun ein konkretes Beispiel aus der Kraftwerkseinsatzplanung betrachtet. Wie haben aus den vorhandenen Rahmenbedingungen ein Optimierungsproblem erstellt und dieses anschließend auf zwei verschiedene Arten gelöst. Anhand dieser Ergebnisse haben wir einen Vergleich zwischen dem kommerziellen Solver LINDO und dem in Matlab implementierten SQP-Verfahren angestellt. Des Weiteren haben wir untersucht welche Eigenschaften die einzelnen nichtlinearen Teilfunktionen der Zielfunktion besitzen und wie sich Veränderungen an verschiedenen Variablen auf das Gesamtsystem auswirken um zu analysieren wie stabil das gesamte System ist.


http://www.gbv.de/dms/ilmenau/abs/79991973Xfabel.txt