Technische Universität Ilmenau

Modellbildung - Modultafeln der TU Ilmenau

Die Modultafeln sind ein Informationsangebot zu unseren Studiengängen. Rechtlich verbindliche Angaben zum Verlauf des Studiums entnehmen Sie bitte dem jeweiligen Studienplan (Anlage zur Studienordnung). Bitte beachten Sie diesen rechtlichen Hinweis. Angaben zum Raum und Zeitpunkt der einzelnen Lehrveranstaltungen entnehmen Sie bitte dem aktuellen Vorlesungsverzeichnis.

Fachinformationen zu Fachnummer 6316 - allgemeine Informationen
Fachnummer6316
FakultätFakultät für Informatik und Automatisierung
Fachgebietsnummer2212 (Simulation und Optimale Prozesse)
Fachverantwortliche(r)Prof. Dr. Pu Li
SpracheDeutsch
TurnusWintersemester
Vorkenntnisse

Vorausgesetzt wird der erfolgreiche Abschluss folgender Fächer:   

  • Mathematik 1 und 2
  • Physik 1 und 2
  • Elektrotechnik  1
Lernergebnisse

 

 

Die Studierenden können für wesentliche technische Systeme ein mathematisches Modell aufbauen, das für Analyse, Simulation und Reglerentwurf geeignet ist. Sie kennen wesentliche Modellbildungsprinzipien der theoretischen Modellbildung und können im Rahmen einer experimentellen Modellbildung eine Parameteridentifikation und eine Modellvalidierung durchführen.

 

Inhalt

Möchte man das Verhalten eines technischen Systems vor seiner Realisierung simulativ untersuchen oder eine Regelung für das System entwerfen, benötigt man ein Modell (also eine mathematische Beschreibung) des Systems. Die Entwicklung eines geeigneten Modells kann sich in der Praxis als aufwändig erweisen. In der Vorlesung werden systematische Vorgehensweisen und Methoden für eine effiziente Modellbildung entwickelt. Dabei wird in die Wege der theoretischen und experimentellen Modellbildung unterschieden.

Nach einer Einführung (Kapitel 1) werden zunächst Methoden der theoretischen Modellbildung (Kapitel 2) vorgestellt. Ausgangspunkt sind Modellansätze und Modellbildungsprinzipien in verschiedenen physikalischen Domänen wie z.B. der Mechanik. Diese werden durch Analogiebetrachtungen und die Darstellung im Blockschaltbild miteinander verknüpft, und Methoden zur Modellvereinfachung werden diskutiert. Für die experimentelle Modellbildung (Kapitel 3-5) werden allgemeine Modellansätze eingeführt und anschließend Methoden Identifikation von Modellparametern aus Messdaten entwickelt. Zur effizienten experimentellen Analyse von Systemen wird die Möglichkeit der Modellvalidierung durch statistische Tests vorgestellt.

Die Kapitel der Vorlesung gliedern sich wie folgt:

1. Einführung

2. Physikalische („Whitebox“) Modelle

3. Allgemeine („Blackbox“) Modelle

4. Parameteridentifikation

5. Modellvalidierung durch statistische Tests

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Über Beamer steht ergänzend das Skript mit Beispielen und Zusammenfassungen zur Verfügung. Zur Veranschaulichung werden numerische Simulationen gezeigt.

Das Skript kann im Copyshop erworben oder im PDF-Format frei herunter geladen werden. Auf der Vorlesungs-Webseite finden sich weiterhin aktuelle Informationen, Übungsaufgaben und Unterlagen zur Prüfungsvorbereitung.

Literatur
  • R. Isermann, M. Münchhof: Identification of Dynamic Systems – An Introduction with Applications, Springer Verlag, 2011
  • J. Wernstedt: Experimentelle Prozessanalyse, VEB Verlag Technik, 1989
  • K. Janschek: Systementwurf mechatronischer Systeme, Methoden – Modelle – Konzepte, Springer, 2010
  • W. Kleppmann: Taschenbuch Versuchsplanung, Produkte und Prozesse optimieren, 7. Auflage, Hanser, 2011
Lehrevaluation

Pflichtevaluation:

Freiwillige Evaluation:

WS 2010/11 (Übung)

WS 2012/13 (Vorlesung)

WS 2013/14 (Übung)

WS 2015/16 (Vorlesung)

WS 2015/16 (Übung)

WS 2016/17 (Vorlesung, Übung)

Hospitation:

Spezifik im Studiengang Bachelor Maschinenbau 2013, Bachelor Elektrotechnik und Informationstechnik 2013, Master Wirtschaftsingenieurwesen 2013 (AT), Master Electrical Power and Control Engineering 2013, Master Wirtschaftsingenieurwesen 2014 (AT)
FachnameModellbildung
Prüfungsnummer2200242
Leistungspunkte3
Präsenzstudium (h)22
Selbststudium (h)68
VerpflichtungPflicht
Abschlussmündliche Prüfungsleistung, 30 Minuten
Details zum Abschluss
max. Teilnehmerzahl
Spezifik im Studiengang Bachelor Technische Kybernetik und Systemtheorie 2013
FachnameModellbildung
Prüfungsnummer2200386
Leistungspunkte3
Präsenzstudium (h)22
Selbststudium (h)68
VerpflichtungPflicht
Abschlusskeiner
Details zum Abschluss
max. Teilnehmerzahl
Spezifik im Studiengang Master Wirtschaftsingenieurwesen 2009 (ABT), Bachelor Technische Kybernetik und Systemtheorie 2010, Master Wirtschaftsingenieurwesen 2010 (ABT), Master Wirtschaftsingenieurwesen 2011 (ABT)
FachnameModellbildung
Prüfungsnummer2200242
Leistungspunkte3
Präsenzstudium (h)34
Selbststudium (h)56
VerpflichtungPflicht
Abschlussmündliche Prüfungsleistung, 30 Minuten
Details zum Abschluss
max. Teilnehmerzahl
Spezifik im Studiengang Bachelor Ingenieurinformatik 2008
FachnameModellbildung
Prüfungsnummer2200242
Leistungspunkte3
Präsenzstudium (h)34
Selbststudium (h)56
VerpflichtungWahlpflicht
Abschlussmündliche Prüfungsleistung, 30 Minuten
Details zum Abschluss
max. Teilnehmerzahl

Informationen und Handreichungen zur Pflege von Modul- und Fachbeschreibungen durch den Modul- oder Fachverantwortlichen finden Sie auf den Infoseiten zum Modulkatalog.