Technische Universit├Ąt Ilmenau

Dynamics of mechatronic systems - Modultafeln of TU Ilmenau

The Modultafeln have a pure informational character. The legally binding information can be found in the corresponding Studienplan and Modulhandbuch, which are served on the pages of the course offers. Please also pay attention to this legal advice (german only). Information on place and time of the actual lectures is served in the Vorlesungsverzeichnis.

module properties 100363 - common information
module number100363
departmentDepartment of Mechanical Engineering
ID of group 2341 (Mechatronics Group)
module leaderProf. Dr. Thomas Sattel
requirements
learning outcome

Die Studierenden kennen die wichtigsten Energiewandlungsprinzipien auf der Basis klassischer und relativ neuartiger aktiver Materialien (Smart Materials, Intelligent Materials), können für einfache Wandlungsaufgaben einen modellbasierten Entwurf als Aktor, Motor, Sensor, Generator oder Transformator vornehmen. Die Studierenden lernen zudem den Stand der Forschung kennen und die Entwicklungstendenzen im Bereich dieser Energiewandlersysteme.

Details in major Bachelor Technische Kybernetik und Systemtheorie 2013
module nameDynamics of mechatronic systems
credit points5
Obligationobligatory
certificate of the module Individual achievements or exams
details of the certificate

Mechatronische Energiewandlung auf der Basis aktiver Materialien ist ein relativ junges Forschungs- und Entwicklungsgebiet, das reichhaltiges Potenzial für industrielle Innovationen bietet. Die Vorlesung gliedert sich in folgende Teile

  • Einführung: Anwendungsbeispiele, Aktive Materialien, Zustandsgrößen, Energieformen, Wechselwirkung zwischen den Zustandsgrößen, Grundlagen der Kontinuumsphysik (Kinematik, Bilanzgleichungen, Materialgleichungen), Wandlungsprinzipien, Netzwerkdarstellung
  • Piezoelektrische Systeme: Materialaufbau, Materialgleichungen, Wirkungsweise d33-, d31-, d15-Effekt Phänomenologie (Drift, Hysterese, Linearität, …), Herstellung, Fertigung, Aufbau, Bauelemente, Aktoren, Motoren, Sensoren, Transformatoren, Messsysteme, Konstruktionsprinzipien, Anwendungsbeispiele, Modellbildung für den quasistatischen und dynamischen Betrieb, Leistungselektronik, Regelung
  • Magnetostriktive Systeme: Materialaufbau, Physikalischer Effekt, Bauelemente, Anwendungsbeispiele, Leistungselektronik, Entwurf von Wandlern
  • Elektro- und magnetorheologische Systeme: Einsatzgebiete, Strömungsmechanische Grundlagen, Wirkprinzipien, Aufbau,Modellbildung und Entwurf, Leistungselektronik, Anwendungsbeispiele, Messung von Kenngrößen
  • Formgedächtnislegierungssysteme: Thermische und magnetische Formgedächtnislegierungen, physikalische Effekte, Wirkprinzipien, Aufbau, Modellbildung und Entwurf

Elektroaktive Polymersysteme: Allgemeine Übersicht zu EAP, Materialien, physikalische Prinzipien, Wirkprinzipien, Aufbau, Modellbildung und Entwurf von dielektrisch aktiven Polymersystemen