Technische Universität Ilmenau

Differential Geometry - Modultafeln of TU Ilmenau

The module lists provide information on the degree programmes offered by the TU Ilmenau.

Please refer to the respective study and examination rules and regulations for the legally binding curricula (Annex Curriculum).

You can find all details on planned lectures and classes in the electronic university catalogue.

Information and guidance on the maintenance of module descriptions by the module officers are provided at Module maintenance.

Please send information on missing or incorrect module descriptions directly to modulkatalog@tu-ilmenau.de.

module properties module number 200455 - common information
module number200455
departmentDepartment of Mathematics and Natural Sciences
ID of group2412 (Probability Theory and Mathematical Statistics)
module leaderProf. Dr. Thomas Hotz
languageDeutsch
term Sommersemester
previous knowledge and experience

Analysis 1-4, Lineare Algebra 1-2, Algebra

learning outcome

Die Studierenden sind in der Lage, Analysis auf Mannigfaltigkeiten, insbesondere mit Lie-Gruppen und -Algebren sowie auf homogenen Räumen, zu betreiben.

content

Differenzierbare Mannigfaltigkeiten und Abbildungen, Tangentialräume, Vektorfelder, Lie-Gruppen und -Algebren, homogene Räume, Differentialformen, Riemannsche Mannigfaltigkeiten

media of instruction and technical requirements for education and examination in case of online participation

Tafel, Skript, Aufgaben

literature / references

Boothby, W. M. (2003). An Introduction to Differentiable Manifolds and Riemannian Geometry. 2. Aufl., Academic Press, San Diego, CA.
Lee, John M. (2013). Introduction to Smooth Manifolds. 2. Aufl.,
Springer, New York, NY.

Lee, John M. (1997). Riemannian Manifolds. Springer, New York, NY.

Singer, I. M. and Thorpe, J. A. (1967). Lecture Notes on Elementary Topology and Geometry. Springer, New York, NY.

Sagle, A. A. and Walde, R. E. (1973). Introduction to Lie Groups and Lie Algebras. AcademicPress, New York, NY.

evaluation of teaching
Details reference subject
module nameDifferential Geometry
examination number2400807
credit points10
SWS6 (4 V, 2 Ü, 0 P)
on-campus program (h)67.5
self-study (h)232.5
obligationobligatory module
examoral examination performance, 30 minutes
details of the certificate
alternative examination performance due to COVID-19 regulations incl. technical requirements
signup details for alternative examinations
maximum number of participants
Details in degree program Bachelor Mathematik 2021
module nameDifferential Geometry
examination number2400807
credit points10
on-campus program (h)67
self-study (h)233
obligationelective module
examoral examination performance, 30 minutes
details of the certificate
alternative examination performance due to COVID-19 regulations incl. technical requirements
signup details for alternative examinations
maximum number of participants