Technische Universität Ilmenau

Robotvision - Modultafeln der TU Ilmenau

Die Modultafeln sind ein Informationsangebot zu den Studiengängen der TU Ilmenau.

Die rechtsverbindlichen Studienpläne entnehmen Sie bitte den jeweiligen Studien- und Prüfungsordnungen (Anlage Studienplan).

Alle Angaben zu geplanten Lehrveranstaltungen finden Sie im elektronischen Vorlesungsverzeichnis.

Informationen und Handreichungen zur Pflege von Modulbeschreibungen durch die Modulverantwortlichen finden Sie unter Modulpflege.

Hinweise zu fehlenden oder fehlerhaften Modulbeschreibungen senden Sie bitte direkt an modulkatalog@tu-ilmenau.de.

Modulinformationen zu Robotvision im Studiengang Master Informatik 2009
Modulnummer183
Prüfungsnummer2200099
FakultätFakultät für Informatik und Automatisierung
Fachgebietsnummer 2233 (Neuroinformatik und Kognitive Robotik)
Modulverantwortliche(r)Prof. Dr. Horst-Michael Groß
TurnusWintersemester
SpracheDeutsch
Leistungspunkte4
Präsenzstudium (h)22
Selbststudium (h)98
VerpflichtungWahlmodul
Abschlussalternative Prüfungsleistung, 20 Minuten
Details zum Abschluss

90% Klausur 90 min + 10% Praktikum

Anmeldemodalitäten für alternative PL oder SLDie Anmeldung zur alternativen semesterbegleitenden Abschlussleistung erfolgt über das Prüfungsverwaltungssystem (thoska) außerhalb des zentralen Prüfungsanmeldezeitraumes. Die früheste Anmeldung ist generell ca. 2-3 Wochen nach Semesterbeginn möglich. Der späteste Zeitpunkt für die An- oder Abmeldung von dieser konkreten Abschlussleistung ist festgelegt auf den (falls keine Angabe, erscheint dies in Kürze):
  • Anmeldebeginn: 07.07.2021
  • Anmeldeschluss: 14.07.2021
  • Rücktrittsfrist: 27.09.2021
  • letzte Änderung der Fristen: 06.07.2021
max. Teilnehmerzahl
Vorkenntnisse

LV Neuroinformatik

Lernergebnisse und erworbene Kompetenzen

In der Vorlesung Robotvision lernen die Studierenden die Begrifflichkeiten und das Methodenspektrum des Maschinellen Sehens mit Fokus in der mobilen Robotik kennen. Sie verstehen das Paradigma der handlungsorientierten Wahrnehmung - insbesondere zur visuellen Roboternavigation in natürlicher Umwelt. Sie beherrschen wichtige Basisoperationen für die visuelle Wahrnehmung der Umgebung (Tiefe, Bewegung, Hindernisse, Freiraum, Räumlichkeiten, eigene Position in der Welt) und können Handlungskonsequenzen aus der visuellen Wahrnehmung der Umgebung ableiten. Sie kennen Techniken der vision-basierten Umgebungswahrnehmung und der lokalen und globalen Navigation von Kognitiven Robotern in komplexer realer Einsatzumgebung.

Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte für unterschiedliche Fragestellungen der Service- und Assistenzrobotik zu entwerfen und umzusetzen, sowie bestehende Lösungskonzepte zu bewerten. Vor- und Nachteile der Komponenten und Verfahren im Kontext praktischer Anwendungen sind den Studierenden bekannt.

Inhalt

Die Lehrveranstaltung vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung von Verfahren der vision-basierten Roboternavigation sowie zur erforderlichen Informations- und Wissensverarbeitung. Sie vermittelt sowohl Faktenwissen, begriffliches und algorithmisches Wissen aus folgenden Themenkomplexen:

  • Basisoperationen d. Roboternavigation
  • Neuronale Basisoperationen der visuo-motorischen Verarbeitung – der neuronale Instruktionssatz: funktionelle und topografische Abbildungen (u.a. log-polare Abbildung), Auflösungspyramiden, neuronale Felddynamik, ortsvariante Informationsverarbeitung
  • Basisoperationen & Technologien für die visuelle Umgebungswahrnehmung:
    • Detektoren & Deskriptoren für Interest-Points in 2D-Bildern
    • Bewegungssehen und optischer Fluss
    • Tiefenwahrnehmung, Tiefenkameras (RGB-D Kameras)
    • Detektoren & Deskriptoren für Tiefenbilder (3D-Bilder)
    • Visuelle Odometrie
  • Vision-basierte Roboternavigation
    • Hindernisvermeidung (u.a. flussbasiert, Untergrund-Segmentierung)
    • Mapping und Selbstlokalisation
    • Visuelles SLAM (Simultaneous Localization and Map Building inkl. ORB-SLAM)
  • Innovative Entwicklungen (z.B. Semantisches Labeln)
  • Exemplarische Software-Implementierungen von Basisoperationen

Im Rahmen des Pflichtpraktikums werden die behandelten methodischen und algorithmischen Grundlagen der vision-basierten Roboternavigation durch die Studierenden selbst softwaretechnisch umgesetzt und im Rahmen eines vorgefertigten Robotersimulations-Frameworks implementiert.

Medienformen

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Übungsaufgaben, Videos, Python Apps, e-Learning mittels „Jupyter Notebook”

 

Link zum Moodlekurs:

https://moodle2.tu-ilmenau.de/course/view.php?id=2999

Literatur

- Hertzberg, J., Lingemann, K., Nüchter, A.: Mobile Roboter, Springer 2012 - Siegwart, R., Nourbakhsh, I. R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots. MIT Press 2004 - Jähne, B. Digitale Bildverarbeitung. Springer Verlag 2005 - Bradsky, G., Kaehler, A. Learning OpenCV: Computer Vision with OpenCV Library

- Siciliano, B., Khatib: O. Springer Handbook of Robotics, Springer 2016

- Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, MIT Press 2005

 

Lehrevaluation

Pflichtevaluation:

WS 2009/10 (Fach)

WS 2014/15 (Fach)

Freiwillige Evaluation:

WS 2008/09 (Vorlesung)

WS 2010/11 (Vorlesung)

WS 2011/12 (Vorlesung)

WS 2012/13 (Vorlesung)

WS 2013/14 (Vorlesung)

WS 2015/16 (Vorlesung)

WS 2016/17 (Vorlesung)

WS 2017/18 (Vorlesung)

WS 2018/19 (Vorlesung, Übung)

Hospitation: