Technische Universität Ilmenau

Stochastic Models - Modultafeln of TU Ilmenau

The module lists provide information on the degree programmes offered by the TU Ilmenau.

Please refer to the respective study and examination rules and regulations for the legally binding curricula (Annex Curriculum).

You can find all details on planned lectures and classes in the electronic university catalogue.

Information and guidance on the maintenance of module descriptions by the module officers are provided at Module maintenance.

Please send information on missing or incorrect module descriptions directly to modulkatalog@tu-ilmenau.de.

module properties Stochastic Models in degree program Master Informatik 2009
module number7930
examination number2400276
departmentDepartment of Mathematics and Natural Sciences
ID of group 2412 (Probability Theory and Mathematical Statistics)
module leaderProf. Dr. Thomas Hotz
term summer term only
languageDeutsch
credit points4
on-campus program (h)34
self-study (h)86
obligationelective module
examoral examination performance, 30 minutes
details of the certificate
alternative examination performance due to COVID-19 regulations incl. technical requirements
signup details for alternative examinations
maximum number of participants
previous knowledge and experienceGrundkurs Wahrscheinlichkeitsrechnung
learning outcomeDie Studierenden kennen wichtige Klassen stochastischer Prozesse, die bei der Modellierung von Computernetzen eine Rolle spielen, und können derartige Prozesse simulieren. Sie sind mit den klassischen Modellen der Warteschlangentheorie und -netzwerke vertraut.
contentErzeugung von Pseudozufallszahlen; Grundbegriffe der Theorie zufälliger Prozesse, Markovsche Prozesse mit diskreter und stetiger Zeit, Poissonprozess, Simulation dieser Prozesse;
Grundlagen der Warteschlangentheorie und der Warteschlangennetzwerke
media of instruction and technical requirements for education and examination in case of online participationSkript
literature / referencesS. M. Ross: Introduction to Probability Models. 9. Auflage, Acdemic Press 2006.
R. Nelson: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Perfomance Modeling. Springer 2000.
evaluation of teaching

Pflichtevaluation:

WS 2018/19 (Qualitative Evaluation)

Freiwillige Evaluation:

Hospitation: