Technische Universit├Ąt Ilmenau

Approximation Algorithms in Discrete Mathematics - Modultafeln of TU Ilmenau

The module lists provide information on the degree programmes offered by the TU Ilmenau.

Please refer to the respective study and examination rules and regulations for the legally binding curricula (Annex Curriculum).

You can find all details on planned lectures and classes in the electronic university catalogue.

Information and guidance on the maintenance of module descriptions by the module officers are provided at Module maintenance.

Please send information on missing or incorrect module descriptions directly to modulkatalog@tu-ilmenau.de.

module properties Approximation Algorithms in Discrete Mathematics in degree program Master Mathematik und Wirtschaftsmathematik 2013 (WM)
module number5777
examination number2400155
departmentDepartment of Mathematics and Natural Sciences
ID of group 2411 (Discrete Mathematics and Algebra)
module leaderProf. Dr. Michael Stiebitz
term summer term only
languageDeutsch
credit points4
on-campus program (h)34
self-study (h)86
obligationelective module
examnone
details of the certificate

werden bei Bedarf festgelegt

signup details for alternative examinations
maximum number of participants
previous knowledge and experience

Einführung in diskrete Mathematik; Graphen und Algorithmen; Grundlagen der Informatik; Grundlagen der Stochastik

learning outcome

Beherrschen der wesentlichen Techniken zur Untersuchung, mathematischen Analyse und algorithmischen Bearbeitung von Problemen über ausgewählten diskreten Strukturen Fach- und Methodenkompetenz Beherrschen von Untersuchungsmethoden der diskreten Mathematik, die sich grundlegend von den analytischen Methoden der Analysis unterscheiden Anwendung auf konkrete diskrete Modelle Fach- und Methodenkompetenz Beherrschung wesentlicher Theorien und Algorithmen zur Bearbeitung von Problemen in diskreten Strukturen Anwendung des Erlernten bei konkreten Problemen Anwendung der Theorie und Methoden aus der Einführung in die diskrete Mathematik Fähigkeit zur Auswahl geeigneter und ggf. zum Entwurf neuer Algorithmen zur Problemlösung

content

Sequentielle Algorithmen und Komplexitätsanalyse (worst case und average case), effiziente Algorithmen, Strategien des Algorithmenentwurfs (Teile und Herrsche, rekursive Alg., Dynamisches Programmieren, Greedy-Methode, probabilistische Algorithmen), Sortier- und Selektionsalgorithmen, Hashing, Heuristiken

media of instruction

Beamer, Folien, Tafel, Skripte

literature / references

M. Aigner: Diskrete Mathematik; D. Jungnickel: Graphen, Netzwerke und Algorithmen R. Diestel, Graphentheorie, 3. Auflage, Springer-Verlag, 2006. Bollobas, Modern graph theory, Springer, New York, 1998. B. Korte und J. Vygen, Combinatorial Optimization Theory and Algorithms, 3te Auflage Springer, 2006. N.L. Biggs, Discrete Mathematics, Oxford University Press, 1995. A. Steger, Diskrete Strukturen, Band 1 und 2, Springer. P. Tittmann, Einführung in die Kombinatorik, Spektrum Akademischer Verlag, 2000. L. Volkmann, Diskrete Strukturen - Eine Einführung, Aachener Beiträge zur Mathematik, Band 27, Mainz Verlag, Aachen 2000.

evaluation of teaching

Pflichtevaluation:

Freiwillige Evaluation:

SS 2014 (Vorlsung)

WS 2016/17 (Vorlesung)

Hospitation: