Technische Universit├Ąt Ilmenau

Fuzzy and Neuro-Control - Modultafeln of TU Ilmenau

The Modultafeln have a pure informational character. The legally binding information can be found in the corresponding Studienplan and Modulhandbuch, which are served on the pages of the course offers. Please also pay attention to this legal advice (german only). Information on place and time of the actual lectures is served in the Vorlesungsverzeichnis.

subject properties Fuzzy and Neuro-Control in major Master Wirtschaftsingenieurwesen 2013 (AT)
subject number100726
examination number220398
departmentDepartment of Computer Science and Automation
ID of group 2211 (Automation Engineering Group)
subject leader N. N.
term Wintersemester
languageDeutsch
credit points5
on-campus program (h)45
self-study (h)105
Obligationobligatory elective
examexamination performance with multiple performances
details of the certificate
maximum number of participants
previous knowledge and experience

Abschluss der Grundausbildung in Mathematik, Regelungstechnik, Systemanalyse

learning outcome

Aneignung von Kenntnissen und praktischen Fertigkeiten beim Entwurf von Fuzzy- und Neuro-Systemen zur Anwendung auf den Gebieten der Modellbildung, des Entwurfs regelungstechnischer Systeme und der Lösung von Klassifikationsaufgaben in wissensbasierten Entscheidungshilfesystemen. Kennenlernen von Basismechanismen und Anwendungsgebieten von Evolutionären Algorithmen.

content

Grundlagen der Fuzzy-Theorie, Module des Fuzzy-Systems, Kennlinien und Kennflächen von Fuzzy-Sytemen, Fuzzy-Modellbildungsstrategien, Fuzzy-Klassifikation und -Klassensteuerung, optimaler Entwurf von Fuzzy-Steuerungen und Regelungen, adaptive/lernende Fuzzy-Konzepte, Beispiele aus Technik, verwendete Tools: Fuzzy-Control Design Toolbox, Fuzzy Logic Toolbox für MATLAB.

 Theoretische Grundlagen Künstlicher Neuronaler Netze. Lernstrategien (Hebbsches Lernen, Delta-Regel Lernen, Competetives Lernen). Vorstellung grundlegender Netzwerktypen wie Perzeptron, Adaline, Madaline, Back-Propagation Netze, Kohonen-Netze. Modellbildung mit Hilfe Neuronaler Netze für statische (Polynommodell) und dynamische (Differenzengleichungsmodell, Volterra-Reihen-Modell) nichtlineare Systeme einschließlich entsprechender Anwendungshinweise (Fehlermöglichkeiten, Datenvorverarbeitung, Gestaltung des Lernprozesses). Strukturen zur Steuerung/Regelung mit Hilfe Neuronaler Netze (Kopieren eines konventionellen Reglers, Inverses Systemmodell, Internal Model Control, Model Predictive Control, direktes Training eines neuronalen Reglers, Reinforcement Learning). Methoden zur Neuro-Klassifikation (Backpropagation, Learning Vector Quantization). Anwendungsbeispiele und Vorstellung von Entwicklungstools für Künstliche Neuronale Netze , verwendete Tools: Neural Network Toolbox für MATLAB, HALCON, NeuralWorks Professional.

media of instruction

Bei der Vorlesung werden über Beamer die wichtigsten Skizzen, Gleichungen und Strukturen dargestellt. Einfache Beispiele, das Herleiten von Gleichungen und die Erstellung von Strukturen werden anhand von Tafelbildern entwickelt. Zusätzlich wird der Lehrstoff mit Beispielen unter Verwendung der in MATLAB vorhandenen Toolboxen anhand untermauert. Die Vorlesungsfolien und das Skript können als PDF-Dokument heruntergeladen werden. Es findet zusätzlich zur Vorlesung alle zwei Wochen ein rechnergestütztes Seminar statt, in welchem die Studenten unter Verwendung von MATLAB/Simulink Aufgaben im Bereich der Modellbildung, Regelung und Klassifikation mit Fuzzy und Neuro Methoden lösen.

literature / references
  • Adamy J.:  Fuzzy Logik, Neuronale Netze und Evolutionäre Algorithmen Shaker Verlag, Aachen 2005.
  • Koch M., Kuhn Th., Wernstedt J.:  Fuzzy Control – Optimale Nachbildung und Entwurf optimaler Entscheidungen, Oldenbourg, München, 1996.
  • Kiendl H.: Fuzzy Control methodenorientiert, Oldenbourg, München 1997.
  • D. Patterson: Künstliche Neuronale Netze, München,...: Prentice Hall, 1996. R. Brause: Neuronale Netze, Stuttgart: Teubner, 1995. K. Warwick, G.W.Irwin, K.J. Hunt: Neural networks for control and systems, London: Peter Pelegrinus Ltd., 1992.
  • Schöneburg E., Heinzmann F., Fedderson S.:  Genetische Algorithmen und Evolutionsstrategien, Addison-Wesley, 1994.
  • Rechenberg I.: Evolutionsstrategie ’94, frommann-holzboog, 1994
evaluation of teaching