http://www.tu-ilmenau.de

Logo TU Ilmenau


Arbeitsgruppe Numerische Mathematik
und Informationsverarbeitung


Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. rer. nat. habil. Hans Babovsky

Telefon +49 3 677 69-3 616

E-Mail senden



INHALTE

Abschlussarbeiten

Anzahl der Treffer: 14
Erstellt: Thu, 14 Dec 2017 23:07:31 +0100 in 0.0652 sec


Tischer, Mario
Modellierung eines Gasgemischs im hydrodynamischen Limes. - 51 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

Verwendet man bei der Betrachtung des "Evaporation-Condensation-Problem" gängigen Methoden zur Analyse des Hydrodynamischen Limes, so erhält man ein als""Ghost-Effect" bezeichnet, physisch unmögliches Ergebnis. In einer Arbeit von Prof. Babovsky wurde stattdessen die Diffuse Skalierung verwendet, bei welcher der "Ghost-Effect" nicht auftrat. In meiner Arbeit wurde die Diffuse Skalierung auf ein bestimmtes Diskretes Geschwindigkeitsmodell (den Broadwell-Model) angewandt, um dieses Ergebnis anhand eines konkreten Beispieles zu verifizieren.


http://www.gbv.de/dms/ilmenau/abs/874933668tisch.txt
Gruschwitz, Michael
Attraktordimensionen zeitdiskreter dynamischer Systeme: Grundlagen und numerische Verfahren. - 146 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2015

Bei dissipativen dynamischen Systemen ist - insbesondere im Rahmen der Modellbildung - meist das Langzeitverhalten, und damit der sogenannte Attraktor des dynamischen Systems von besonderem Interesse. Eine wichtige Eigenschaft des Attraktors ist dabei dessen Dimension. Zum einen kann die Dimension des Attraktors einen Anhaltspunkt für die Art des vorliegenden dynamischen Systems geben: ganzzahlige Dimensionswerte deuten auf reguläre, nicht ganzzahlige Dimensionswerte hingegen auf chaotische dynamische Systeme hin. Darüber hinaus kann die Dimension des Attaktors beispielsweise bei der Modellbildung einen Anhaltspunkt für die Anzahl der benötigten unabhängigen Variablen liefern. Die vorliegende Arbeit beschäftigt sich daher mit den Möglichkeiten die Dimension eines (diskreten) dissipativen dynamischen Systems numerisch zu bestimmen. Ausgehend von einer Zusammenfassung der wichtigsten mathematischen Grundlagen und einer kurzen Einführung in die Begriffe der dynamischen Systeme, werden die verschiedenen, in der Literatur gängigen Dimensionsbegriffe einheitlich motiviert und dargelegt. Nach einer Bewertung der numerischen Bestimmbarkeit der unterschiedlichen Dimensionsbegriffe werden für die am geeignetsten erscheinenden Dimensionsbegriffe - Lyapunov-Dimension und Korrelationsdimension - Algorithmen motiviert und dargestellt sowie diese Algorithmen an Beispielen getestet. Abschließend werden die erhaltenen Resultate bzgl. der Genauigkeit der Resultate und der dafür benötigten Laufzeiten miteinander verglichen.


http://www.gbv.de/dms/ilmenau/abs/832934542grusc.txt
Fechner, Felix
Numerische Simulation der makroskopischen Lasergleichungen. - 34 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2014

Ziel dieser Arbeit ist die Analyse des Einflusses diverser Parameter auf die makroskopischen Lasergleichungen. Hierzu bedarf es einer numerischen Beschreibung und einer programmiertechnischen Umsetzung, welche ebenfalls durchgeführt werden sollen. Um ein Verständnis sowohl der physikalischen als auch der mathematisch-numerischen Grundlagen zu gewährleisten, werden beide detailliert vorgestellt. Zunächst soll hierbei die semiklassische Theorie des Laserlichts wiedergegeben werden, welche die Maxwellsche Theorie des Elektromagnetismus mit einem quantenmechanischen Zweiniveausystem verbindet. Dies führt letztlich auf drei gekoppelte Differentialgleichungen, welche die physikalischen Größen elektrische Feldstärke, Polarisation und Besetzungsinversion miteinander verknüpfen. Direkt anschließend wird die numerische Theorie der gewöhnlichen und partiellen Differentialgleichungen ausgearbeitet. Hierbei werden im Rahmen der gewöhnlichen Differentialgleichungen zunächst verschiedene Einschrittverfahren und darauf folgend explizite und implizite Mehrschrittverfahren vorgestellt. Die numerische Theorie der partiellen Differentialgleichungen beschränkt sich auf die Methode der finiten Differenzen, wobei explizite, implizite und gemischte Verfahren an den Beispielen der Wellen- und der Diffusionsgleichung vorgestellt werden. Zudem werden die theoretischen Konzepte der Stabilitätsuntersuchung sowie verschiedene Stabilitätskriterien angegeben. Darauf aufbauend wird die numerische Umsetzung der Lasergleichungen beschrieben. Es wird darauf Wert gelegt, die Herangehens- und Arbeitsweise des Autors aufzuzeigen, um somit ein einfacheres Nachvollziehen der Gedankengänge zu ermöglichen. Aus diesem Grund wird zunächst die physikalische Vorbereitung - das Reskalieren der Gleichungen behandelt. Dies ermöglicht eine einheitenlose und somit mathematisch-numerisch stark vereinfachte Handhabung der Gleichung. Anschließend folgt die numerische Stabilitätsuntersuchung verschiedener Verfahren, angewandt auf die zunächst noch entkoppelt partielle Lasergleichung. Diese Untersuchung soll ebenfalls die Arbeitsweise des Autors in den Vordergrund rücken und wird deshalb nicht in der strengen mathematischen Beweisstruktur wiedergegeben. Vielmehr werden die Stabilitätsbedingungen - der formalen Beweisrichtung entgegengesetzt - hergeleitet, wodurch die Nachvollziehbarkeit und der Lesefluss erhöht werden. Nach der physikalischen Interpretation der Werte der entkoppelten Gleichung werden abschließend die drei gekoppelten Gleichungen computertechnisch umgesetzt. Von den mannigfaltigen untersuchenswerten Phänomenen werden einerseits ein assymetrisches Auftreten der Besetzungsinversion und andererseits die Abhängigkeit des Laserprozesses von Dämpfungstermen untersucht.


http://www.gbv.de/dms/ilmenau/abs/791508900fechn.txt
Büttner, Florian
Ein implizites parallelisierbares Runge-Kutta-Verfahren. - 53 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

Das Ergebnis der Bachelorarbeit mit dem Thema: "Ein implizites parallelisierbares Runge-Kutta-Verfahren" ist das Auffinden eines problemspezifischen implizites Runge-Kutta-Verfahrens der Konsistenzordnung 2, welches die Eigenschaft der A-Stabilität erfüllt. Zunächst wird im ersten Kapitel ein kurzer Überblick über die Theorie der gewöhnlichen Differentialgleichungen gegeben. Anschließend wird auf die Grundlagen der Numerik gewöhnlicher Differentialgleichungen eingegangen, verschiedene implizite Runge-Kutta-Verfahren vorgestellt und deren Stabilitätseigenschaften beschrieben. Im fünften Kapitel werden Verfahren zur numerischen Lösung von Gleichungenssystemen vorgestellt, um somit die Gleichungen, welche bei der Berechnung der impliziten Runge-Kutta-Verfahren auftreten, zu berechnen. Das nächste Kapitel beschäftigt sich mit der Konstruktion des Runge-Kutta-Verfahrens und des Algorithmus zur Lösung eines Anfangwertproblems. Ferner wurden die Stabilitätseigenschaften des Verfahrens untersucht. Hierbei hat sich herausgestellt, dass das konstruierte Verfahren A-stabil, AN-stabil, B-stabil und algebraisch stabil ist. Allerdings sind die Voraussetzungen der starken A-Stabilität und der L-Stabilität nicht erfüllt. Anschließend wurde der Algorithmus an einem einfachen Testproblem, sowie an einer Variante des Broadwell-Modells überprüft. Im letzten Kapitel wurde mit einem adaptiven Verfahren noch eine Möglichkeit angegeben, den lokalen Diskretisierungsfehler mithilfe eines Kontrollverfahrens abschätzen zu können. Die im Unterkapitel 5.3 angegebenen Eigenschaften der Funktion J stimmen mit denen des Kollisionsoperators des allgemeinen diskreten Geschwindigkeitsmodells überein, wobei dieser parallel ausgewertet wird. Aus diesem Grund eignet sich der Algorithmus zur numerischen Lösung der Standardform des diskreten, linearisierten Geschwindigkeitsmodells der Boltzmanngleichung. Aufgrund der Stabilitätseigenschaften des impliziten Runge-Kutta-Verfahrens, lässt dieses Verfahren eine größere Schrittweite zur Berechnung der Lösung zu. Dies führt letztendlich zu einer schnelleren Berechnung der Differentialgleichungen bzw. bietet es die Möglichkeit bei komplexeren Modellen überhaupt zu einer Lösung zu gelangen.


Brechtken, Stefan
Modellierung der Boltzmanngleichung auf diskreten Geschwindigkeitsgittern, numerische Umsetzung und Parallelisierung mithilfe von CUDA. - 116 S.
Ilmenau : Techn. Univ., Masterarbeit, 2010

Im ersten Teil dieser Arbeit wurden die wichtigsten Eigenschaften der Boltzmanngleichung zusammengetragen. Daraufhin wurde die Boltzmanngleichung auf einem diskreten Geschwindigkeitsgitter modelliert und gezeigt, dass die modellierte Gleichung die gleichen Eigenschaften besitzt wie die originale Gleichung. In der zweiten Hälfte entwickelten wir einfache Algorithmen um die modellierte (diskrete) Boltzmanngleichung numerisch zu lösen. Diese Algorithmen wurden in C++ zur Berechnung auf einem CPU und parallelisiert in CUDA zur Berechnung auf einem GPU umgesetzt. Abschließend wurden einige Modellprobleme numerisch mithilfe der beiden Implementierungen gelöst und überprüft, ob eine parallelisierte Implementierung dieses Problems auf einem GPU sinnvoll ist.


http://www.gbv.de/dms/ilmenau/abs/644367660brech.txt
Kaufmann, Julia
Iterationen hoher Ordnung - von Newton bis zur Gegenwart. - 50 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2009

In dieser Arbeit geht es um die näherungsweise Bestimmung von nichtlinearen skalaren Gleichungen mit festem Parameterwert a. Es wurde untersucht, ob die quadratische Konvergenz des Newtonverfahrens auf eine beliebig hohe Konvergenzordnung ausgeweitet werden kann. Dies wurde an einigen Beispielen in Maple untersucht.


http://www.gbv.de/dms/ilmenau/abs/612037096kaufm.txt
Xie, Yang
Numerische Verfolgung von Gleichgewichtslagen dynamischer Systeme - Stabilitätsanalyse und Lösungsdiagramme mit praktischen Anwendungen. - Online-Ressource (PDF-Datei: 98 S., 1,29 MB)
Ilmenau : Techn. Univ., Diplomarbeit, 2009

Durch die Einstellung der Parameter des Programms, kann man selbst wählen, wie genau und wie effektiv die Kurven bestimmt werden sollen. An verschiedenen Beispielen wurden die Einstellungsmöglichkeiten der Parameter getestet, um eine Stabilität im Programm festzulegen.


http://www.gbv.de/dms/ilmenau/abs/610165062xie.txt
Guo, Suqing
Numerische Verfahren für lineare Advektionsgleichung. - 85 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2009

Meine Diplomarbeit beschreibt die numerische Verfahren für die lineare Advektionsgleichungen. Die linearen Advektionsgleichungen sind spezielle partielle Differentialgleichungen. Mit der verschiedene numerische Verfahren kann man die Nährungswert von den liearen Advektionsgleichung bestimmen. Die verschiedene Verfahren haben verschiedene Eigenschaften, z.B Konvergent, Stabilität, CFL-Bedingung usw. Wenn ein numerische Verfahren Konsistent und Stabilität ist, ist das Verfahren Konvergent. Für mehrer Dimensionen kann man durch spezielle numerische Verfahren anwenden, z.B. Taylorreihen-Verfahren, Charaktristiken-Verfahren und Operator-Splitting-Verfahren.


http://www.gbv.de/dms/ilmenau/abs/610160265guo.txt
Hartwig, Andreas
Numerische Approximation und Visualisierung periodischer und quasiperiodischer Lösungen dynamischer Systeme mittels Fouriermethoden. - 106 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2009

Diese Diplomarbeit beschäftigt sich mit der Approximation von periodischen und quasiperiodischen Lösungen dynamischer Systeme. Dazu wird die sogenannte Spektralmethode verwendet. Im Falle von periodisch und quasiperodische erregten Systemen wird ein Stabilitätskriterium hergeleitet. Desweiteren wird in einem kleinen Tutorial erklärt, wie man in MATLAB mit Hilfe des Werkzeugs GUIDE grafische Benutzeroberflächen (kurz GUI) entwickeln kann.


http://www.gbv.de/dms/ilmenau/abs/604706685hartw.txt
Engert, Sonja
Vergleich numerischer Verfahren zur Berechnung des LCE-Spektrums parameterabhängiger zeitkontinuierlicher dynamischer Systeme. - 82 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2009

Dynamische Systeme sind ein wesentlicher Bestandteil zur Beschreibung zeitabhängiger Prozesse. Da allerdings die quantitative Analyse dynamischer Systeme eien sehr komplexe Problematik ist, wurden, um diesen Sachverhalt zu vereinfachen, gewisse gemittelte größen, die sogenannten Lyapunov-Exponenten eingeführt. Diese sind ein maß dafür, wie stark sich zwei benachbarte Trajektorien im Verlauf des dynamischen Systems einander annähern oder voneinander entfernen. Die Menge aller Lyapunov-Exponenten eines Systems nennt man das LCE-Spektrum. Es dient der Klassifikation der verschiedenen Attraktortypen und des Chaos. Im Rahmen dieser Arbeit wurden drei numerische Verfahren zur Bestimmung des LCE-Spektrums aufbereitet, praktisch in Matlab umgesetzt und miteinander verglichen. Die in dieser Arbeit vorgestellten Berechnungsverfahren basieren auf der Gram-Schmidt-Orthogonalisierung, der Singulärwertzerlegung und der QR-Zerlegung. Für diese Verfahren werden Möglichkeiten zur Bestimmung einer geeigneten Anzahl an Iterationsschritten und einer günstigen Integrationsschrittweite vorgestellt, die auch als Ansatzpunkt für die Vergleiche verwendet werden.


http://www.gbv.de/dms/ilmenau/abs/601821467enger.txt
Schönemann, Andy
Quadratur und Kubatur: Formeln, Adaptivität, Genauigkeit und Implementationen. - 113 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2009

Die Diplomarbeit untersucht verschiedene Aspekte der numerischen Integration. Mögen diese auf den ersten Blick nicht unbedingt direkt miteinander verknüpft sein, so erkennt man jedoch bei genauem Hinsehen, dass sie durchaus kapitelübergreifend sind. - Gleichzeitig sind die untersuchten Fragestellungen und die dabei gewonnenen Erkenntnisse schöne und sinnvolle Bausteine auf dem Gebiet der numerischen Integration. Dabei wurde Wert darauf gelegt, dass einige Sachverhalte ausführlich erläutert und begründet werden (z.B. Clenshaw-Curtis-Quadratur oder Gauss-Legendre-Quadratur). In den dazu erstellten Programmen in Maple und Matlab werden sowohl bekannte Formeln, als auch die in den einzelnen Abschnitten dargestellten Beziehungen implementiert. Die numerischen und grafischen Auswertungen illustrieren anschaulich und übergreifend die erzielten Ergebnisse. - Der Diplomarbeit füge ich eine CD bei, auf der alle Maple- und Matlab-Arbetisblätter zu finden sind.


http://www.gbv.de/dms/ilmenau/abs/601133064schoe.txt
Schlutter, Stefanie
Numerische Fortsetzung stabiler und instabiler Invarianzkurven von Poincaré-Abbildungen dynamischer Systeme. - 96 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2009

Die Diplomarbeit beschäftigt sich mit der numerischen Approximation stabiler und instabiler Invarianzkurven von Poincaré-Abbildungen dynamischer Systeme. Bei periodisch erregten Systemen lassen sich in der Regel mehrere stabile Lösungen bestimmen. Nun stellt sich bei gegebener Anfangslösung die Frage, auf welche dieser Lösungen sich das System einschwingt. Dazu sollen mit der Fortsetzungsmethode von Philippow die Grenzen der Einzugsgebiete (die so genannten Separatrizen) stabiler periodischer Lösungen numerisch approximiert werden. Mit Hilfe eines selbst entwickelten Matlab-Programms soll das Lösungsverhalten periodisch erregter Systeme der Dimension˜2 geklärt werden. Der Fortsetzungs-Algorithmus knüpft an die langjährige Forschungsarbeit auf diesem Gebiet an und verbessert ein bereits bestehendes Programm.


http://www.gbv.de/dms/ilmenau/abs/59115790Xschlu.txt
Prätor, Nico
Kombinierte Lösungsverfahren für Gleichungssysteme. - 83 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2008

Gegenstand der Betrachtungen sind drei iterative Verfahren zum Lösen von Gleichungssystemen; das Gradientenverfahren (GV), ein modifiziertes Gradientenverfahren (MGV) und das Newtonverfahren (NV). Die Arbeitsweise der Verfahren ist ähnlich. In jedem Schritt der Iteration wird der nächste Iterationspunkt als Summe des aktuellen Punktes und einer Korrektur berechnet, bis man eine Lösung des Gleichungssystems erreicht. Der wesentliche Unterschied der Verfahren liegt in der Korrektur und der Art ihrer Berechnung. Ziel ist es nun, ein neues, iteratives Verfahren zu entwickeln, in dem die Korrekturen der einzelnen Verfahren kombiniert werden, um zum nächsten Iterationpunkt zu gelangen. Für lineare Gleichungssysteme werden wir dazu das GV, das MGV und das NV kombinieren. Bei nichtlinearen Gleichungssystemen findet eine Kombination zweier NV mit dem MGV Anwendung. Die auf diese Weise entstandenen Algorithmen wurden im Computeralgebrasystem Maple programmiert. Sie wurden in kleindimensionierten Beispielen praktischen Tests unterzogen, Iterationsverläufe wurden anschaulich illustriert und die Resultate anschließend ausgewertet und bewertet.


http://www.gbv.de/dms/ilmenau/abs/570921635praet.txt
Paul, Rene
Numerische Untersuchungen zu einem diskreten Modell der Boltzmann-Gleichung. - 90 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2007

In dieser Arbeit wurden mit Hilfe von C++ Programmen verschiedene numerische Untersuchungen zu diskreten Modellen der Boltzmann-Gleichung durchgeführt. Im Kapitel II. wurden am kleinsten Kollisionsmodell (6-Punkte Modelle) die Eigenschaften gezeigt und anschließend für größere Modelle verallgemeinert. Im Kapitel III. 'Numerische Untersuchungen' ist zuerst die Abhängigkeit der Lösung vom Gitter näher untersucht worden. Wir kamen zu dem Schluss, je näher der Extrempunkt (Peak) der Funktion $ M_G(v_x^{(i)},v_y^{(i)}) $ an einem Gitterpunkt liegt, um so besser wird die Energie $ E_N $ approximiert. Erhöht man die Punkte Anzahl der Modelle (vom 24-Punkte zum 96-Punkte Modell) wird die Energie $E_N$ ebenfalls besser approximiert. Probleme traten nur auf, wenn die Temperatur $ T$ sehr klein oder sehr groß wurde. Beim Test der Anfangsbedingungen wurde festgestellt, dass die Wahl der Anfangsbedingungen einen großen Einfluss auf die Berechnungen haben. In einem weiteren Punkt der Arbeit wurden die Abklingzeiten vom H- und vom M-Funktional verglichen. Wir haben festgestellt, dass das H-Funktional schneller abklingt als das M-Funktional. Bei dem M-Funktional hängt der Funktionsverlauf sehr stark von der Wahl der Variablen $ \alpha $ und $ \beta $ ab. Die Wahl der Anfangsgeschwindigkeiten spielt bei den beiden Funktionalen keine große Rolle. Im nächsten Punkt hat sich die Arbeit mit der Konstruktion diskreter Lösungen zu vorgegebenen Momenten beschäftigt. Als Grundlage diente hierfür das Newton-Verfahren. Hier hat sich gezeigt, dass die numerisch errechneten Grenzen in einigen Fällen von den theoretisch ermittelten Grenzen abweichen. Im Abschnitt III.5 haben wir das qualitative Verhalten unterschiedlicher Modelle untersucht. Mit Hilfe des Newton-Verfahrens wurde nach der Wahl von Anfangsbedingungen eine Grenzfunktion berechnet. Danach wurde mit den Anfangsbedingungen das Hauptprogramm gestartet. In jedem Schritt wurde das 4. Moment berechnet und mit dem 4. Moment der Grenzfunktion verglichen. Als Ergebnis haben wir die Funktion $\phi(t)$ erhalten und festgestellt, dass sie in den Bereichen gemäß Tabelle 1 (Kapitel III.1) einen linearen Verlauf hat. Der optimale Verlauf zeigte sich im 96-Punkte Modell mit der Anfangsbedingung $\theta=1$ und dem Vorfaktor $\alpha_1=1$ vor dem Stoßoperator. Diese Werte wurden dann im Abschnitt III.3 übernommen. Hier wurde gezeigt, dass die Lösung die Eigenschaften des BKW-Typ erfüllen. Das Kapitel IV. stellt die Programme, die während der numerischen Untersuchungen benutzt wurden, näher vor. Im Anhang sind die Abbildungen, die im Text nur schwer erkennbar sind, nochmals dargestellt. Weiterhin sind die Tabellen und die Quellcodes der einzelnen Programme angegeben.


http://www.gbv.de/dms/ilmenau/abs/530537877paul.txt