http://www.tu-ilmenau.de

Logo TU Ilmenau


Ihre Position

INHALTE

Anzahl der Treffer: 745
Erstellt: Mon, 18 Jun 2018 08:21:25 +0200 in 0.0341 sec


Sternkopf, Christian ; Manske, Eberhard
Digital frequency offset-locked He-Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output. - In: Measurement science and technology : devoted to the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. - Bristol : IOP Publ, ISSN 13616501, Bd. 29 (2018), 6, S. 064013, insges. 13 S.
https://doi.org/10.1088/1361-6501/aab987
Rothleitner, Christian ; Schleichert, Jan; Rogge, Norbert; Günther, Ludwig; Vasilyan, Suren; Hilbrunner, Falko; Knopf, Dorothea; Fröhlich, Thomas; Härtig, Frank
The Planck-Balance - using a fixed value of the Planck constant to calibrate E1/E2-weights. - In: Measurement science and technology : devoted to the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. - Bristol : IOP Publ, ISSN 13616501, Bd. 29 (2018), 7, S. 074003, insges. 9 S.
https://doi.org/10.1088/1361-6501/aabc9e
Theska, René ; Zentner, Lena; Fröhlich, Thomas; Weber, Christian; Manske, Eberhard; Linß, Sebastian; Gräser, Philipp; Harfensteller, Felix; Darnieder, Maximilian; Kühnel, Michael
State of the art precision motion systems based on compliant mechanisms. - In: The 4th International Conference Mechanical Engineering in XXI Century / International Conference Mechanical Engineering in XXI Century ; 4 (Niš) : 2018.004.19-20. : Niš, April 19-20, 2018 : proceedings. - Niš : Faculty of Mechanical Engineering, ISBN 978-86-6055-103-2, (2018), S. 3-8

Ullmann, Vinzenz ; Oertel, Erik; Manske, Eberhard
High-precision angle sensor based on a Köster's prism with absolute zero-point. - In: Measurement science and technology : devoted to the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. - Bristol : IOP Publ, ISSN 13616501, Bd. 29 (2018), 6, S. 064006, insges. 12 S.
https://doi.org/10.1088/1361-6501/aab252
Weichert, Christoph ; Köchert, Paul; Schötka, Eugen; Flügge, Jens; Manske, Eberhard
Investigation into the limitations of straightness interferometers using a multisensor-based error separation method. - In: Measurement science and technology : devoted to the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. - Bristol : IOP Publ, ISSN 13616501, Bd. 29 (2018), 6, S. 064001, insges. 14 S.
https://doi.org/10.1088/1361-6501/aab7e3
Kühnel, Michael ; Krapf, Gunter; Fröhlich, Thomas
Neuartige Anwendungsfelder innovativer Kraftmess- und Wägetechnik : Schlussbericht zum InnoProfile Forschungsprojekt. - [Ilmenau] : [Technische Universität Ilmenau, Fakultät für Maschinenbau, Institut für Prozessmess- und Sensortechnik]. - 1 Online-Ressource (86 Seiten, 2,23 MB)
Förderkennzeichen BMBF 03IPT512Y
https://doi.org/10.2314/GBV:1018364498
Osten, Wolfgang ; Haist, Tobias; Manske, Eberhard
How to drive an optical measurement system to outstanding performance?. - In: Proceedings of SPIE. - Bellingham, Wash : SPIE, Bd. 10557Bd. 10557 (2018), 105570Q, insges. 15 S.

In the context of measurement technology, optical methods have a number of unique features. These features include in particular the non-contact and high speed interaction with the object under test, the largely free scalability of the dimension of the probing tool, the high resolution of the data, the diversity of information channels in the light field, and the flexible adaptability of the comparative standard - the wavelength. On the other hand the user is confronted with a number of serious challenges. Two of the biggest challenges that currently attract high attention in both the technical as well as life sciences, relate to exceeding the physical limits of resolution and to improve the precision of the measurement. Therefore optical measurement methods are subject to constant improvement. The characteristics that give rise to improve the performance of the systems are obviously dependent on the purpose of the measurement and the object under test. But there are also general features that can be used to assess the performance of a measurement system. Here we refer to the spatial and temporal resolution, the area related resolution, the precision and trueness of the results, the robustness, the degree of automation, the process capability and the ability to work as close as possible to the process. In this contribution we describe the current challenges for measurement systems. Based on this we discuss general and application dependent features for the assessment of modern optical measurement systems. Afterwards, we describe measures to assess and to improve their performance. Finally, we show an advanced optical measurement system where several of these features were considered with regard to ensuring a high performance.


https://doi.org/10.1117/12.2300856
Weidenfeller, Laura ; Schienbein, Ralf; Kirchner, Johannes; Reinhardt, Carsten; Manske, Eberhard
Development of laser positioning system of high accuracy in the nanometer range. - In: Proceedings of SPIE. - Bellingham, Wash : SPIE, Bd. 10544Bd. 10544 (2018), 105440E, insges. 7 S.

Direct Laser Writing techniques like two-photon-polymerization or UV-lithography have become common tools for the micro- and nanofabrication of precise devices like photonic crystals. A decrease in the size of structures of special devices requires a significant better resolution of the laser beam system that can be determined by using different photoinitiators or a second depletion laser for STED-lithography. However, besides the optical limits for the resolution of the laser system due to diffraction effects, the positioning systems for the laser beam or the sample stage lead to further imprecisenesses. To benefit from the high resolution techniques for the structuring process, the need for highly accurate positioning systems has dramatically grown during the last years. A combination of lithographic techniques with a nanopositioning and nanomeasuring machine NMM-1, developed at the TU Ilmenau, enables high precision structuring capability in an extended range. The large positioning volume of 25mm x 25mm x 5mm with a resolution in the sub-nanometer range is a good condition for ultra precision manufacturing with large area 3D-Laser-Lithography. Advantages and disadvantages as well as further developments of the NMM-1 system will be discussed related to current developments in the laser beam and nanopositioning system optimization. Part of the further development is an analysis of the implementability of additional ultra precise rotational systems in the NMM-1 for the unlimited addressability perpendicular to the surface of a hemisphere as key strategy for multiaxial nanopositioning and nanofabrication systems.


https://doi.org/10.1117/12.2312704
Xu, Haifeng
Hochpräzise Bestimmung der Form- und Orthogonalitätsabweichungen einer Spiegelecke und Untersuchung des Verhaltens unter veränderlichen Umweltbedingungen. - Ilmenau : Universitätsverlag Ilmenau. - XVI, 179 Seiten
Technische Universität Ilmenau, Dissertation, 2017

ISBN 3863601718 = 978-3-86360-171-3
Dissertation erschienen unter dem Titel: Hochpräzise interferometrische Bestimmung der Formabweichungen einer Spiegelecke und Untersuchung des Verhaltens unter veränderlichen Umweltbedingungen

Die rasanten Entwicklungen der letzten Jahre insbesondere in der Halbleitertechnik und in verschiedenen Präzisionstechnologien erfordern immer präzisere Fertigungsprozesse, die bis an die physikalischen Grenzen vordringen. Deshalb wurde am Institut für Prozessmess- und Sensortechnik der Technischen Universität Ilmenau eine neue Nanopositionier- und Nanomessmaschine (NPM-Maschine) NPMM-200 mit einem Messvolumen von 200 mm x 200 mm x 25 mm und einer gesicherten Messauflösung von 80 pm entwickelt. Das Koordinatensystem der NPM-Maschinen wird durch das verwendete Interferometer-Raumspiegelsystem gebildet. Die Herstellung hochpräziser Spiegelflächen einer Raumspiegelecke mit höchsten Anforderungen an die Ebenheit ist nicht nur technisch schwierig, sondern auch sehr kostspielig. Die Fertigungstoleranzen limitieren die Ebenheit der Spiegelflächen der Raumspiegelecke und deren Winkellage zueinander. Daher ist es notwendig, vorhandene systematische Abweichungen der Spiegelflächen zu ermitteln und zu korrigieren. Gegenstand der vorliegenden Arbeit ist die hochpräzise Bestimmung der Topographien der Spiegelflächen der Raumspiegelecke mit einem Fizeau-Interferometer und der Stitching-Technologie. Das Subapertur-Stitching-Interferometer für sehr große Messbereiche bis 350 mm x 350 mm besteht aus einem hochpräzisen XY-Verschiebetisch, einem handelsüblichen Fizeau-Phasenschiebe-Interferometer mit einer 6 Zoll Apertur und einer Raumspiegeleckebaugruppe mit integrierter Justiereinrichtung. Eine speziell entwickelte Software "SmartStitching" wird verwendet, um die aufgenommenen Messdaten der Subaperturen zu einer gesamten Topographie zu rekonstruieren. Der Stitching-Algorithmus kompensiert nicht nur Positionierfehler, die durch Führungsfehler des Lineartisches während der Verschiebung verursacht werden, sondern auch systematische Fehler wie z.B. Abbildungsfehler. Die absolute Topographie des Referenzspiegels wurde im Vorfeld durch den Multi-Rotations-Drei-Platten-Test kalibriert. Bei bekannter Formabweichung des Referenzspiegels kann der vorhandene systematische Fehler des Phasenschiebe-Interferometers korrigiert werden. Die Topographie des Referenzspiegels wurde dann im Datenverarbeitungssystem gespeichert, damit sie zur Korrektur systematischer Fehler verwendet werden kann. Weiterhin werden in dieser Arbeit andere Einflussfaktoren untersucht, z.B. Messfehler, die durch das Subaperture-Stiching-Interferometer verursacht werden, und dem akkumulierten Fehler, der durch den Stitching-Algorithmus verursacht wird. Ein weiterer Schwerpunkt der vorliegenden Arbeit ist die hochpräzise Bestimmung der Abweichung der Orthogonalität zwischen den Messspiegeln (xy-, xz- und yz-Messspiegel) einer Raumspiegelecke. Zwei Messverfahren wurden für die Bestimmung der Winkelfehler eingesetzt. Die Winkel zwischen den x- und y-Spiegeln werden mit Hilfe von zwei Pentaprismen, einem kalibrierten rechtwinkligen Prisma und einem hochauflösenden elektronischen Autokollimator bestimmt. Diese Kalibriermethode verwendet zwei horizontal ausgerichtete Pentaprismen und ein hochpräzises rechtwinkliges Prisma als 90˚-Winkelnormal, um Winkelfehler zwischen der x- und y-Spiegelfläche einer Raumspiegelecke zu bestimmen. Das hochpräzise rechtwinklige Prisma wurde im Vorfeld kalibriert. Die Winkel zwischen den x- und z-Spiegeln werden mit Hilfe von zwei gegeneinander ausgerichteten Pentaprismen und einem Autokollimator kalibriert. Der Autokollimator ist über ein Pentaprisma entlang der Normalen des z-Spiegels ausgerichtet. Dieses Pentaprisma bewegt sich nur entlang der x-Richtung, bis er das zweite Pentaprisma trifft und richtet nun auch das zweite Pentaprisma so, dass der Winkel der x-Spiegelfläche mit dem AKF gemessen werden kann. Die Winkelabweichung zwischen den x- und z-Spiegeln der Raumspiegelecke ist der Differenzwert vom Messwert des Autokollimators und dem Winkelfehler beider Pentaprismen. Die Rechtwinkligkeitsabweichung zwischen den y-und z-Spiegeln wird in gleicher Weise kalibriert. Um systematische Fehler zu minimieren, ist es erforderlich, ein Kalibrierverfahren für Pentaprismen in vertikaler Ausrichtung mittels eines Fizeau-Interferometers umzusetzen. Der Drei-Pentaprismen-Test wird verwendet, um die absolute Winkelfehler der Pentaprismen in vertikaler Lage zu bestimmen. Die Genauigkeit für diese Methode wird auf 0,1" geschätzt und wird durch die Kalibrierungsunsicherheit der Pentaprismen bestimmt. Alle gemessenen Orthogonalitätsabweichungen werden abschließend quantifiziert und mit den Topographiedaten der Raumspiegelecke für Korrektur kombiniert.


http://www.gbv.de/dms/ilmenau/toc/1014630592.PDF