Habilitationen/ Promotionen/ Fachpresse

2024

2021

  • Jahrbuch Oberflächentechnik Band 77 (2021): David Glück, Mathias Fritz, Indira Käpplinger, Andreas Bund, "Nickel-Ti3SiC2-Dispersionsbeschictungen", Eugen G. Leuze Verlag KG, Bad Saulgau, ISBN 978-3-87480-369-4, pp. 117-125

2019

  • DGM-dIALOG Vol 3(2019) S16-21
    "Elektrochemische Oberflächentechnik"
    R. Böttcher, A. Endrikat, T. Engemann, M. Fritz, V. Gruia, S. Hesamedini, A. Ispas, M. Leimbach, U. Schmidt, R. Sottor und A. Bund

Publikationen des Fachgebietes "Elektrochemie und Galvanotechnik"

Anzahl der Treffer: 588
Erstellt: Wed, 24 Apr 2024 23:02:06 +0200 in 0.1092 sec


Böttcher, René; Mai, Sebastian; Borisenko, Natalia; Ispas, Adriana; Bund, Andreas; Endres, Frank
A Raman study on the speciation of different metal ions in an AlCl3-based ionic liquid. - In: Journal of the Electrochemical Society, ISSN 1945-7111, Bd. 170 (2023), 7, p072503

The speciation of Cr, Zn and Sn in AlCl3/1-ethyl-3-methylimidazolium chloride containing CrCl2, ZnCl2 and SnCl2, respectively, has been studied by cyclic voltammetry (CV), Raman spectroscopy and density functional theory (DFT) calculations. Addition of the respective metal salt causes the current waves in the CV to decrease, indicating a reaction of the metal salts with Al2Cl7−. Compared to the neat electrolyte, the Raman peaks of Al2Cl7− decrease while the AlCl4− peak increases in intensity, broadens and shifts towards lower wavenumbers. Calculated wavenumbers of metal complexes [Me(AlCl4)3]− reflect these observations. DFT calculations of the Gibbs free energies of formation, solvation and reaction support the formation of the proposed complexes. The central ions are coordinated by three bidentate AlCl4− ligands that are arranged planar-trigonally. Due to the occupied Sn-5s orbital, repulsive forces cause a trigonal-pyramidal geometry in case of the Sn complex. Based on the similarities in the experimental observations and the orbital configuration of Zn2+ compared to Cr2+, the spontaneous formation of the species [Cr(AlCl4)3]− can be assumed.



https://doi.org/10.1149/1945-7111/ace383
Kurniawan, Mario; Ivanov, Svetlozar
Electrochemically structured copper current collectors for application in energy conversion and storage: a review. - In: Energies, ISSN 1996-1073, Bd. 16 (2023), 13, 4933, S. 1-33

Copper current collectors (Cu CCs) impact the production technology and performance of many electrochemical devices by their unique properties and reliable operation. The efficiency of the related processes and the operation of the electrochemical devices could be significantly improved by optimization of the Cu CCs. Metallic Cu plays an important role in electrochemical energy storage and electrocatalysis, primarily as a conducting substrate on which the chemical processes take place. Li nucleation and growth can be influenced by the current collector by modulating the local current density and Li ion transport. For example, the commonly used planar Cu CC does not perform satisfactorily; therefore, a high number of different modifications of Cu CCs have been proposed and reported in the literature for minimizing the local current density, hindering Li dendrite formation, and improving the Coulombic efficiency. Here, we provide an updated critical overview of the basic strategies of 3D Cu CC structuring, methodologies for analyzing these structures, and approaches for effective control over their most relevant properties. These methods are described in the context of their practical usefulness and applicability in an effort to aid in their easy implementation by research groups and private companies with established traditions in electrochemistry and plating technology. Furthermore, the current overview could be helpful for specialists with experience in associated fields of knowledge such as materials engineering and surface finishing, where electrochemical methods are frequently applied. Motivated by the importance of the final application of Cu CCs in energy storage devices, this review additionally discusses the relationship between CC properties and the functional parameters of the already-implemented electrodes.



https://doi.org/10.3390/en16134933
Isaac, Nishchay Angel; Schlag, Leslie; Ispas, Adriana; Reiprich, Johannes; Soydan, Alper K.; Moreira, Pedro H. O.; Thiele, Sebastian; Aliabadian, Bardia; Flock, Dominik; Knauer, Andrea; Jiménez, Juan J.; Bund, Andreas; Morales Sánchez, Francisco Miguel; Pezoldt, Jörg; Jacobs, Heiko O.
Novel gas phase route toward patterned deposition of sputter-free Pt/Al nanofoils. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 8 (2023), 18, 2300448, S. 1-8

This article reports a new approach toward fabrication and directed assembly of nanoparticulate reactive system (Nanofoils) on patterned substrates. Different from current state-of-the-art, gas phase electrodeposition uses nanoparticles instead of atoms to form densely packed multilayered thin films at room temperature-pressure. On ignition, the multilayer system undergoes an exothermic self-propagating reaction. The numerous contact points between two metallic nanoparticulate layers aid in high heat release. Sub-10-nm Platinum (Pt) and Aluminum (Al) particles are synthesized through cathode erosion of metal electrodes in a flow of pure nitrogen gas (spark ablation). Pt/Al bilayer stacks with total thickness of 3–8 µm undergo self-propagating reaction with a 10.3 mm s−1 wavefront velocity on local ignition. The reaction wavefront is captured using high speed videography. Calorimetry studies reveal two exothermic peaks suggesting Pt/Al alloy formation. The peak at 135 ˚C has a higher calorific value of 150 mW g−1 while the peak at 400 ˚C has a 12 mW g−1 exothermic peak. X-ray diffraction study shows reaction-products are cubic Al2Pt with small quantities of orthorhombic Al6Pt and orthorhombic AlPt2. Electron microscopy studies help draw a correlation between film morphology, bimetallic interface, nanoparticle oxidation, and self-propagating reaction kinetics that is significant in broadening our understanding towards nanoparticulate reactive systems.



https://doi.org/10.1002/admt.202300448
Böttcher, René; Ispas, Adriana; Bund, Andreas
Binary aluminum alloys from 1-ethyl-3-methylimidazolium-based ionic liquids for cathodic corrosion protection. - In: Metals, ISSN 2075-4701, Bd. 13 (2023), 2, 377, S. 1-15

Aluminum cannot provide continuous cathodic corrosion protection under ambient conditions due to the formation of an insulating oxide layer and therefore it should be alloyed. Binary aluminum alloys with Cr, Zn and Sn from AlCl3/1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) containing CrCl2, ZnCl2 or SnCl2 have been deposited and their morphology and composition were investigated using SEM/EDS. The corrosion behavior of alloys with 2–4 wt% Cr, Zn or Sn was investigated using potentiodynamic polarization in 3.5 wt% NaCl solution, neutral salt spray test (NSS) and environmental exposure (EE). Pure aluminum provides excellent corrosion protection of steel in a chloride-containing environment, but not under ambient conditions. AlCr alloys show poor corrosion protection while AlZn alloys provide excellent corrosion protection in the NSS test and superior cathodic protection in the EE test compared to aluminum. AlSn alloys are highly active at even low tin contents and dissolve rapidly in chloride-containing electrolytes. However, a slightly improved cathodic protection in the EE test compared to pure aluminum has been observed. The results prove the necessity of alloying aluminum to achieve effective cathodic corrosion protection under mild atmospheric conditions.



https://doi.org/10.3390/met13020377
Arciniega, Luciano Bellatin; Yapu, Raúl Meza; Valencia, Daniel Obregón; Hadzich, Antonella; Costa, Marcus A.; Ispas, Adriana; Bund, Andreas; Flores, Santiago
Alkyds with artistic applications based on drying oils, multifunctional polyalcohols and different polybasic acids. - In: Journal of applied polymer science, ISSN 1097-4628, Bd. 140 (2023), 16, e53746, S. 1-12

Today's requirements in the art field have challenged researchers to create artistic paintings with attractive appearance and long-term color stability. Alkyd-based art mediums have become an important group in the art field, because of their similar characteristics to traditional oils and exceptional drying properties. In this work, high solid alkyd-based art mediums have been synthesized by the monoglyceride and acidolysis processes. Multifunctional polyols and high unsaturated fatty acid sources were compared and used for alkyd synthesis. The use of a non-traditional oil of Peruvian origin is proposed. Resins have been characterized according to their physicochemical (acid number, viscosity, color and density) and drying properties. Drying tendencies were verified with the use of quartz crystal microbalance. Also, the behavior of the art mediums mixed with commercial oil paintings and a dry pigment, have also been evaluated. Results indicate that resins containing the polyol with the highest functionality are more viscous and have fewer tendencies to yellowing, while non-traditional Peruvian oil is the best option for creating light-colored art mediums. Alkyd mediums prepared by the monoglyceride method gave to oil paintings better characteristics and drying behavior on canvas.



https://doi.org/10.1002/app.53746
Endrikat, Anna; Eggert, Lara; Di Maglie, Alex; Attenberger, Klaus; Neumann, Tom; Quoß, Mathias; Bouhrouch, Dalal; Bund, Andreas
Innovative Fertigung von Leiterplatten durch FDM-Druck und selektive Kunststoffmetallisierung. - In: WOMag, ISSN 2195-5891, Bd. 12 (2023), 4, S. 9-11

Mit Hilfe von additiven Fertigungsverfahren lassen sich Kunststoffe mit unterschiedlichen Eigenschaften zu einem Produkt kombinieren. Dies erlaubt es, die Grundeinheiten von elektrischen Leiterplatten mittels Drucktechnik herzustellen, wobei der Aufwand weitgehend unabhängig von der hergestellten Stückzahl ist. Durch Drucken mit metallisierbaren Kunststoffen gelingt es, Leiterbahnen mit akzeptabler Leitfähigkeit auf elektrisch isolierendem Trägermaterial zu erzeugen. Die bisherigen Entwicklungen sind auf die Verwendung von Kunststoff mit einer maximalen Temperaturbelastung bis etwa 100 ˚C beschränkt. Um die bestehenden Verfahren der Leiterplattentechnik nutzen zu können, muss diese Temperaturobergrenze deutlich erhöht werden.



Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Electrochemical deposition of silicon in organic electrolytes. - In: Reference module in chemistry, molecular sciences and chemical engineering, (2023)

Electrodeposition is a versatile instrumental technique, already applied in many industrial fields. However, the deposition of silicon and other reactive elements is still challenging and requires further research and improvement. Accomplishing an efficient electrodeposition of silicon at room temperature is very attractive due to the high number of manufacturing technologies that would benefit from this approach. This work provides an overview of the electrochemical approaches for silicon deposition performed in organic electrolytes. The main factors that impact this process are individually discussed and exemplified with appropriately updated literature sources. Furthermore, the previously available research on characterization of electrodeposited silicon containing layers is provided. These studies are presented in the context of better understanding the structure, composition, and functional properties of the deposited silicon material, which may attract the attention of young academic scientists and process engineers.



https://doi.org/10.1016/B978-0-323-85669-0.00005-2
Najeeb, Mussab; Schwalbe, Ulf
Monitoring considerations of second life lithium ion batteries in battery energy storage systems. - In: PCIM Europe 2022, (2022), S. 1905-1914

This paper presents an analytical study of the most important technical aspects that should be considered in the methodologies for monitoring second-life lithium-ion batteries in stationary energy storage systems. The study is based, on one hand, on the specificity of these batteries in terms of changing their response differently in the second-life than in the first to external and operational influences. On the other hand, it is based on the monitoring requirements of storage systems to obtain an improved monitoring system with sufficient accuracy and more efficient performance of batteries in their second-life.



https://doi.org/10.30420/565822263
Najeeb, Mussab; Schwalbe, Ulf
Incorporating state of charge estimation methods towards more accurate monitoring of second-life lithium-ion batteries. - In: 2022 13th International Renewable Energy Congress (IREC), (2022), insges. 6 S.

Although several methods are developed for estimating the state of charge of lithium-ion batteries, there is still a challenge regarding monitoring the second life of these batteries due to the expected difference in the behavior and operating conditions in their second life. Considering that each method has its advantages and disadvantages according to the application and operating conditions, and monitoring the batteries in their second life is of special importance because it is required to integrate with the battery management system to balance cells, diagnose faults and prevent overheating. Therefore, the estimation method developed in this study, by incorporating artificial neural network method and Kalman filter method with fine-tuning of the filtering process using Coulomb counting, provides a solution for more accurate online monitoring of these batteries. Aiming to get the best possible performance, considering the specificity of the second life of the batteries in terms of operating voltage, low values of expected capacity, discharge ratio and other operational parameters.



https://doi.org/10.1109/IREC56325.2022.10002052
Endrikat, Anna; Eggert, Lara; Di Maglie, Alex; Neumann, Tom; Goldstein, Max; Attenberger, Klaus; Bouhrouch, Dalal; Schlosser, Michel; Bund, Andreas
Innovation processing of circuit boards with FDM printing and selective electrochemical metallization. - In: Meeting abstracts, ISSN 2151-2043, Bd. MA2022-01 (2022), 57, 2369

https://doi.org/10.1149/MA2022-01572369mtgabs