Hochschulbibilographie

Anzahl der Treffer: 143
Erstellt: Fri, 19 Apr 2024 23:07:37 +0200 in 0.0777 sec


Schmeling, Daniel; Shishkin, Andrei; Schiepel, Daniel; Wagner, Claus
Numerical and experimental study of aerosol dispersion in the Do728 aircraft cabin. - In: CEAS Aeronautical Journal, ISSN 1869-5590, Bd. 14 (2023), 2, S. 509-526

The dispersion of aerosols originating from one source, the 'index' passenger, within the cabin of the aircraft Do728 is studied experimentally using an aerosol-exhaling thermal manikin and in Reynolds-averaged Navier-Stokes simulations (RANS). The overall aim of the present study is the experimental determination of the aerosol spreading for the state-of-the-art mixing ventilation (MV) and to evaluate the potential of alternative ventilation concepts for controlling the aerosol spreading in RANS. For MV, the experiments showed that the ratio of inhaled to exhaled aerosol particles drops below 0.06% (volume ratio) for distances larger than two seat rows from the source. However, within a single row, the observed ratio is higher. Further, the dispersion is much weaker for a standing than for a seated index passenger. High air exchange rates and a well-guided flow prevent a dispersion of the aerosols in high concentrations over larger distances. Additionally, the positive effect of a mask and an increased air flow rate, and especially their combination are shown. In the complementary conducted RANS, the advantages of floor-based cabin displacement ventilation (CDV) which is alternative ventilation concept to MV, regarding spreading lengths and the dwell time of the aerosols in the cabin were determined. The obtained results also underline the importance of the flow field for the aerosol dispersion. Further, additional unsteady RANS (URANS) simulations of the short-term process of the initial aerosol cloud formation highlighted that the momentum decay of the breathing and the evaporation processes take place within a few seconds only.



https://doi.org/10.1007/s13272-023-00644-3
Niehaus, Konstantin; Westhoff, Andreas; Wagner, Claus
A semi-empirical model for the prediction of heat and mass transfer of humid air in a vented cavity. - In: International journal of heat and mass transfer, ISSN 1879-2189, Bd. 205 (2023), 123926, S. 1-14

A semi-empirical model to predict the mass transfer rate of water from humid air in mixed convection together with the global heat transfer in a novel experimental set-up is presented. The cuboidal sample consists of isothermally cooled and heated plates with ventilation channels driving a mixed convective flow with inlet channel Reynolds numbers between 210 and 1270, Grashof numbers up to 8.46 ×10^7, and with relative humidities from 29% to 83% (at 25 ˚C). The volumetric velocity field was measured by means of tomographic particle image velocimetry together with the fluid temperature and humidity. The measurement results are used to develop a one-dimensional model to predict the global heat and mass transfer by quantifying the dependency of the Nusselt and Sherwood number on the experimental boundary conditions. A relative deviation between the measurement results and the model prediction below 1% for the sensible heat transfer is reported, while the prediction of the vapor-mass transfer rate exhibits an average relative deviation below 6%.



https://doi.org/10.1016/j.ijheatmasstransfer.2023.123926
Konstantinov, Mikhail; Schmeling, Daniel; Wagner, Claus
Numerical simulation of the aerosol formation and spreading in an air-conditioned train compartment. - In: Journal of aerosol science, ISSN 1879-1964, Bd. 170 (2023), 106139, S. 1-19

This paper presents results of the unsteady aerosol formation and transmission process in a train compartment under ventilation conditions obtained by Computational Fluid Dynamics (CFD) methods. The latter include various models to simulate unsteady flows including the transient behaviour of a two-phase atomization process and thermal air flow. The obtained aerosol distributions predicted for the four cases coughing, speaking and breathing (with and without mask) in a ventilated cabin compartment are discussed analysing the dispersion of the exhaled droplets for a double cough, 10s of speaking and continuous breathing of one source passenger. The results show that the aerosol particles propagate two times deeper in the cabin for the coughing scenario than for speaking, 2.5 times deeper than for free breathing and 17 times deeper than for breathing with a mask. Further, the results reveal that 2min after the end of the coughing, only about 6% of active aerosol particles remain in the compartment.



https://doi.org/10.1016/j.jaerosci.2023.106139
Kästner, Christian; Schneider, Julien David; Du Puits, Ronald
Evolution and features of dust devil-like vortices in turbulent Rayleigh-Bénard convection - an experimental study. - In: JGR, ISSN 2169-8996, Bd. 128 (2023), 2, e2022JD037466, S. 1-20

We present an experimental study simulating atmospheric dust devils in a controlled laboratory experiment. The experimental facility, called the “Barrel of Ilmenau” (www.ilmenauer-fass.de) represents a classical Rayleigh-Bénard set-up and is believed to model the phenomena in a convective atmospheric boundary layer fairly well. Our work complements and extends the numerical work of Giersch and Raasch (2021) https//doi.org/10.1029/2020jd034334 by experiments. Dust devils are thermal convective vortices with a vertical axis of rotation visualized by entrained soil particles. They evolve in the convective atmospheric boundary layer and are believed to substantially contribute to the aerosol transport into the atmosphere. Thus, their evolution, size, lifetime, and frequency of occurrence are of particular research interest. Extensive experimental studies have been conducted by field measurements and laboratory experiments so far. Beyond that, our study is the first attempt of Rayleigh-Bénard convection (RBC) in air to investigate dust devil-like vortices in a laboratory experiment. Up to now, this set-up mimics the natural process of dust devil evolution as closest to reality. The flow measurement was carried out by particle tracking velocimetry using neutrally buoyant soap bubbles. We initially identified dust devil-like vortices by eye from the Lagrangian velocity field, and in a later, more sophisticated analysis by a specific algorithm from the corresponding Eulerian velocity field. We analyzed their frequency of occurrence, observation time, and size. With our work, we could demonstrate that turbulent RBC is an appropriate model to mimic the natural process of the evolution of dust devils in the convective atmospheric boundary layer without artificial stimulation.



https://doi.org/10.1029/2022JD037466
Siegel, Lars;
Aeroakustische Untersuchungen an stationären Stäben und einem oszillierenden Flügel mittels synchroner Particle-Image Velocimetry und Mikrofonmessungen. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (x, 121 Seiten)
Technische Universität Ilmenau, Dissertation 2022

Die kombinierte, experimentelle Erfassung der Strukturen in einer Strömung und der dadurch verursachten Schallabstrahlung ist Gegenstand der vorliegenden Arbeit. Als Messmethoden kamen einerseits die Particle Image Velocimetry (PIV), mit Hilfe derer Schwankungsgrößen im Strömungsfeld innerhalb einer Lichtschnittebene aufgezeichnet werden, und andererseits Mikrofone, die die Druckfluktuationen im akustischen Fernfeld erfassen, zum Einsatz. Durch die synchrone Erfassung lässt sich die Kreuzkorrelation zwischen diesen beiden Größen berechnen, welche dabei Einblicke in den Mechanismus der Schallentstehung und -ausbreitung sowie den Zusammenhang mit den auftretenden Strömungsstrukturen liefert. Der Schwerpunkt der vorliegenden Arbeit liegt in der Erweiterung des Erkenntnisraums dieses experimentellen Verfahrens hinsichtlich zweier Aspekte. Zum einen wird untersucht, inwieweit die Korrelationsergebnisse und davon abgeleitete Größen verwendet werden können, um Rückschlüsse auf die Region der Schallquellen zu schließen, das Ausbreitungsverhalten der Schallschnelle von der Quellregion bis ins Fernfeld nachzuverfolgen und die Verteilung der akustischen Intensität zu quantifizieren. Dafür wurden Experimente an umströmten Stäben in einem aeroakustischen Windkanal durchgeführt, wobei das Beobachtungsfenster der PIV-Messungen sequentiell vom Nahfeld der Stäbe bis ins akustische Fernfeld traversiert werden konnte. Um die erzielten Kreuzkorrelationsergebnisse abzugleichen und die skalierte Kreuzkorrelations-funktion als Ersatzgröße der Schallschnelle zu validieren, wurden analytische Modelle verwendet. Es konnte gezeigt werden, dass in denjenigen Strömungsbereichen, in denen fluiddynamische Prozesse eine untergeordnete Rolle spielen, die skalierte Kreuzkorrelationsfunktion tatsächlich das Ausbreitungsverhalten der Schallschnelle widerspiegelt. In Bereichen mit starken turbulenten Teilchenbewegungen dominieren hingegen die fluiddynamischen Schwankungen um teils mehrere Größenordnungen, so dass eine klare Trennung der rein akustischen Prozesse nicht möglich ist. Jedoch konnte eine eindeutige Verknüpfung der kohärenten, periodisch ablösenden Strömungsstrukturen im Nachlauf der Stäbe mit der Schallemission und dem Transport bzw. der Konvektion der akustischen Informationen sowohl experimentell als auch im Vergleich mit den analytischen Modellen nachgewiesen werden. Mittels einer generalisierten Intensitätsanalyse auf Basis der skalierten Kreuzkorrelationsfunktion konnte darüber hinaus die Quellregion der akustischen Emissionen identifiziert werden. Zum anderen wird untersucht, welchen Einfluss der zusätzliche Freiheitsgrad der periodischen Bewegung eines oszillierenden Tragflügels in einer Strömung auf die Kreuzkorrelationsergebnisse hat. Mit diesem Experiment sollte geklärt werden, ob man mit der synchronen Messtechnik in der Lage ist, trotz sich permanent ändernden Strömungszuständen kohärente Strömungsstrukturen zu identifizieren, die mit der Schallentstehung und -ausbreitung zusammenhängen. Hierbei konnte gezeigt werden, dass zu unterschiedliche Flügelstellungen bzw. Phasenwinkeln charakteristische Strömungsstrukturen auftreten, die verschiedenen Schallquellmechanismen zugeordnet werden können. Im Verlauf des Zyklusses des dynamischen Strömungsabrisses kommt es sowohl zu periodischen Wirbelablösungen an der Flügelhinterkante als auch zu großflächigen Ablösungen entlang der gesamten Profilsehne des Flügels, welche jeweils mit charakteristischen Eigengeräuschmechanismen im Zusammenhang stehen. Darüber hinaus konnten durch Variation der Konfigurationsparameter auffällige Veränderungen in der Geräuschemission identifizieren und quantifizieren werden.



https://doi.org/10.22032/dbt.55499
Müller, Max; Ehrenfried, Klaus; Wagner, Claus
Druckkraftantwort auf eine Kugel bei instationärer Anströmung mit sinusartigem Seitenwind. - In: Experimentelle Strömungsmechanik - 29. Fachtagung, 6.-8. September 2022, Ilmenau, (2022), 23

Mommert, Michael;
Untersuchung der Zirkulationsbewegung und des Wärmetransports in turbulenter Mischkonvektion mittels optischer Messverfahren. - Ilmenau : Universitätsverlag Ilmenau, 2022. - 1 Online-Ressource (xxi, 188 Seiten)
Technische Universität Ilmenau, Dissertation 2022

Diese Arbeit befasst sich mit dem dynamischen Verhalten von Strömungsstrukturen in turbulenter Mischkonvektion. Zu deren Untersuchung wurden Experimente in einer quaderförmigen Rayleigh-Bénard-Zelle, welche durch Luftein- und -auslässe an der oberen und unteren langen Kante auf einer Seite der Zelle erweitert wurde, durchgeführt. Um die Mechanik hinter den verschiedenen Dynamiken der Strukturen zu verstehen, wurden die Geschwindigkeitsfelder für zwei Typen unterschiedlichen dynamischen Verhaltens mit der tomographischen Particle Image Velocimetry (PIV) für den linken Teil der Zelle erfasst. Da das dynamische Verhalten, welches mit niedrigeren Einströmgeschwindigkeiten verbunden ist, selten und nicht periodisch auftrat, wurde eine automatisierte Methode entwickelt, um die Messungen mit dem Eintreten der Dynamik zu starten. Die Analyse der Geschwindigkeitsfelder und ihre Zerlegung in orthogonale Moden ergaben, dass unterschiedliche Mechanismen das dynamische Verhalten der beiden Fälle antreiben: Für den niedrigen Luftdurchsatz dominieren thermische Prozesse und das dynamische Verhalten hängt mit einer Akkumulation warmer Luft innerhalb des vorliegenden Wirbelsystems zusammen, die in unregelmäßigen Abständen zur Freisetzung von Plumes führt. Im Gegensatz dazu dominieren bei höheren Luftdurchsätzen trägheitsgetriebene Prozesse. Insbesondere werden die dynamischen Prozesse in diesem Fall durch Taylor-Görtler-artige Wirbel angetrieben. Der initiale Widerspruch des für beide Fälle beobachteten Umklappens der Rollenstrukturen mit dem Translationsmechanismus aus früheren Untersuchungen wurde durch stereoskopische PIV-Messungen über die gesamte Zelllänge aufgelöst: Sie zeigen, dass der Klappmechanismus primär das Verhalten der Strömung im Seitenwandbereich beschreibt. Um den Beitrag Taylor-Görtler-artiger Wirbel zum Wärmetransport zu untersuchen, wurde die Methode der kombinierten stereoskopischen Particle Image Velocimetry und Thermometrie angewandt, um die Berechnung messebenennormaler Wärmeströme zu ermöglichen. Die Ergebnisse daraus zeigen, dass die Temperatur und die vertikale Geschwindigkeitskomponente korreliert sind, obwohl die Taylor-Görtler-artigen Wirbel durch Trägheitskräfte erzeugt werden. Weitere Analysen zeigen, dass der statistische Fußabdruck dieser Strukturen es erlaubt, sie von z.B. Plumes an der Frontwand zu unterscheiden.



https://doi.org/10.22032/dbt.52357
Wagner, Claus; Wetzel, Tim
Coherent structures in turbulent mixed convection flows through channels with differentially heated walls. - In: GAMM-Mitteilungen, ISSN 1522-2608, Bd. 45 (2022), 2, e202200006, S. 1-18

The occurrence and shape of turbulent structures in mixed convection flows through a differently heated vertical channel are investigated in terms of thermally induced attenuation and amplification of turbulent velocity, pressure, and temperature fluctuations using direct numerical simulations. It is shown that the wall-normal momentum transport is decreased and increased near the heated and cooled wall, respectively, and that this leads to a reduced and elevated production of turbulent velocity fluctuations in the streamwise velocity component in the aiding and opposing flow, respectively. The corresponding flow structures are smoother, faster and warmer in the aiding flow and aligned along the main flow, while the colder structures in the opposing flow are more frayed and less directed. The warmer flow structures in the aiding flow are overall more stable than the colder structures in the opposing flow. Besides, the study reveals that the position of the maximum temperature fluctuations moves toward the heated wall, so that the sweeps produced at the two walls are affected differently by the former. As a consequence, the distance and time period over which the fluctuations develop in the aiding flow are shorter than in the opposing flow. It is further shown that vortex structures oriented in the streamwise direction usually arise with an offset to the right or left above a sweep or an ejection, whereby the decreasing values of the correlation coefficients with increasing Grashof number indicate a weakening of the vortex structures. Since none of the evaluated vortex criteria, that is, the distributions of the vorticity, λ2- value or Rortex-value correlate well with the evaluated minima of the pressure fluctuations, they do not allow a clear identification of the vortex structures. Finally, analyzing the budget of the turbulent kinetic energy it is confirmed that the velocity fluctuations are only indirectly influenced by the buoyancy force. Thus, the attenuation and amplification of the turbulent velocity fluctuations is reflected in the reduction and exaggeration of the Reynolds shear stresses in the aiding and opposing flow, respectively.



https://doi.org/10.1002/gamm.202200006
Du Puits, Ronald;
Time-resolved measurements of the local wall heat flux in turbulent Rayleigh-Bénard convection. - In: International journal of heat and mass transfer, ISSN 1879-2189, Bd. 188 (2022), 122649, S. 1-6

We report direct and time-resolved measurements of the local wall heat flux in turbulent Rayleigh-Bénard convection in air. The measurements have been performed in a cylindrical test section with a diameter of 7.1 m and a diameter-to-height ratio of 8. They cover Rayleigh numbers 8.5×10^5<Ra<2.6×10^9, while the Prandtl number was fixed at Pr=0.7. In order to measure the local wall heat flux, we use heat flux plates that have been flush mounted into the hot/cold surfaces of the convection experiment. The results of our measurements show that the local wall heat flux in turbulent Rayleigh-Bénard convection strongly fluctuates. With increasing Rayleigh number, the variance of the fluctuations goes down with Ra^-0.5 and the probability of large excursions from the mean decreases. The probability density of the fluctuations can be well-described by a distribution according to the Generalized Extreme Value Theory. We also analysed the typical time scales, and we found that the power of the fluctuations becomes more weighted towards higher frequencies, if the Rayleigh number increases.



https://doi.org/10.1016/j.ijheatmasstransfer.2022.122649
Bauer, Christian; Schiepel, Daniel; Wagner, Claus
Assimilation and extension of particle image velocimetry data of turbulent Rayleigh-Bénard convection using direct numerical simulations. - In: Experiments in fluids, ISSN 1432-1114, Bd. 63 (2022), 1, 22, S. 1-17

https://doi.org/10.1007/s00348-021-03369-3