Kongressbeiträge, Tagungsbeiträge - Abstracts

Anzahl der Treffer: 178
Erstellt: Wed, 27 Mar 2024 23:12:08 +0100 in 0.0770 sec


Darnieder, Maximilian; Torres, Mario; Linß, Sebastian; Theska, René
On precise modelling of very thin flexure hinges. - In: Proceedings of the 18th International Conference of the European Society for Precision Engineering and Nanotechnology, (2018), S. 87-88

The continuously rising demands for precision favour the application of monolithic compliant mechanisms with flexure hinges in various fields of precision engineering. It gives way to an almost frictionless and precise motion even under vacuum conditions. These advantages have made compliant mechanism an integral component of high precision weighing cells. A downside of compliant joints is their stiffness towards deflection, which limits the sensitivity of the overall system. Consequently, the flexure hinges are manufactured as thin as possible. The present limit in terms of manufacturing technology is within the range of 50 [my]m. The objective of predicting the behaviour of highest precision weighing cells by modelling is directly interconnected with the exact knowledge of the behaviour of flexure hinges in terms of stiffness. Especially, for flexure hinges with high aspect ratios, typically found in weighing cells, the existing analytical equations and finite element models show pronounced deviations. The present research effort is dedicated to a clarification of this observation. Structure mechanical finite element models are developed to identify the deviations of the models precisely. Results obtained are compared to analytical results and conclusions for the modelling of thin flexure hinges are drawn.



Theska, René; Zentner, Lena; Fröhlich, Thomas; Weber, Christian; Manske, Eberhard; Linß, Sebastian; Gräser, Philipp; Harfensteller, Felix; Darnieder, Maximilian; Kühnel, Michael
State of the art precision motion systems based on compliant mechanisms. - In: The 4th International Conference Mechanical Engineering in XXI Century, (2018), S. 3-8

Mohr-Weidenfeller, Laura; Schienbein, Ralf; Kirchner, Johannes; Reinhardt, Carsten; Manske, Eberhard
Development of laser positioning system of high accuracy in the nanometer range. - In: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, (2018), 105440E, insges. 7 S.

Direct Laser Writing techniques like two-photon-polymerization or UV-lithography have become common tools for the micro- and nanofabrication of precise devices like photonic crystals. A decrease in the size of structures of special devices requires a significant better resolution of the laser beam system that can be determined by using different photoinitiators or a second depletion laser for STED-lithography. However, besides the optical limits for the resolution of the laser system due to diffraction effects, the positioning systems for the laser beam or the sample stage lead to further imprecisenesses. To benefit from the high resolution techniques for the structuring process, the need for highly accurate positioning systems has dramatically grown during the last years. A combination of lithographic techniques with a nanopositioning and nanomeasuring machine NMM-1, developed at the TU Ilmenau, enables high precision structuring capability in an extended range. The large positioning volume of 25mm x 25mm x 5mm with a resolution in the sub-nanometer range is a good condition for ultra precision manufacturing with large area 3D-Laser-Lithography. Advantages and disadvantages as well as further developments of the NMM-1 system will be discussed related to current developments in the laser beam and nanopositioning system optimization. Part of the further development is an analysis of the implementability of additional ultra precise rotational systems in the NMM-1 for the unlimited addressability perpendicular to the surface of a hemisphere as key strategy for multiaxial nanopositioning and nanofabrication systems.



https://doi.org/10.1117/12.2312704
Beloivan, Pavel A.; Latyev, Svjatoslav M.; Frolov, Dmitry N.; Theska, René
Estimation of clearances in the design and adjustment of barrel type lens systems. - In: Optical Measurement Systems for Industrial Inspection X, (2017), Seite 103293V-1-103293V-5

https://doi.org/10.1117/12.2270109
Scheibe, Hannes; Schindler, Christian; Theska, René
Technologies for cost-effective manufacturing of precision aspheres and freeforms. - In: Engineering for a changing world, (2017), insges. 11 S.

Oliveira, Rafael; Lepikson, Herman; Theska, René; Fröhlich, Thomas
Evaluation of the principle for generating reference inertial torques for the dynamic calibration of torque transducers. - In: Engineering for a changing world, (2017), insges. 11 S.

Beloivan, Pavel A.; Latyev, Svjatoslav M.; Theska, René
Features of assembly and adjustment of lens objectives. - In: Engineering for a changing world, (2017), insges. 1 S.

http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017iwk-135:6
Gräser, Philipp; Linß, Sebastian; Zentner, Lena; Theska, René
On the influence of the flexure hinge orientation in planar compliant mechanisms for ultra-precision applications. - In: Engineering for a changing world, (2017), insges. 10 S.

http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017iwk-090:9
Hahm, Christoph; Theska, René; Raab, Dagmar; Fehringer, Andreas; Kästner, Anett
Qualification of silane coatings for the strength enhancement of concrete parts. - In: Engineering for a changing world, (2017), insges. 10 S.

http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017iwk-023:5
Darnieder, Maximilian; Theska, René; Fröhlich, Thomas; Pabst, Markus; Wenig, Ronny; Hilbrunner, Falko
Design of high-precision weighing cells based on static analysis. - In: Engineering for a changing world, (2017), insges. 10 S.

http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017iwk-067:6