Kongressbeiträge, Tagungsbeiträge - Abstracts

Anzahl der Treffer: 178
Erstellt: Tue, 16 Apr 2024 23:08:14 +0200 in 0.0695 sec


Schienbein, Ralf; Theska, René; Weigert, Florian
A contribution to the implementation of ultraprecision rotations for multiaxial nanopositioning machines. - In: Engineering for a changing world, (2017), insges. 10 S.

http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017iwk-003:0
Darnieder, Maximilian; Marangoni, Rafael R.; Theska, René; Fröhlich, Thomas; Rahneberg, Ilko
Contribution to the mechanical enhancement of load cells in precision weighing technology by means of advanced adjustment strategies. - In: Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology, (2017), S. 411-412

The accuracy of force measurement systems is predominantly influenced by its stiffness towards deflection. Monolithic mechanical systems in precision weighing technology rely on ultrathin flexure hinges. Further stiffness reduction by a decrease of the minimum hinge thickness is unfavourable. Consequently, the present concept relies on compensation rather than a reduction of the stiffness. Based on precise adjustments, the system state is altered towards an astatic state. Hereby, the overall stiffness and the tilt sensitivity is reduced. These properties have been determined as major contributions to the measurement error. The results of the theoretical investigations form a basis for future experiments and a further improvement of load cells.



Hahm, Christoph; Theska, René; Raab, Dagmar; Mitterhuber, Monika; Kästner, Anett
Strength enhancement of precision concrete parts by sol-gel surface coating. - In: Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology, (2017), S. 51-52

In former own publications it was shown, that high precision concrete parts are a reliable alternative to natural stone for machine base frames. Beside long term stability also a predictable and highly reproducible thermal behaviour is required. The use of low expansion materials is not appropriate for a whole machine structure since these materials are coming with several drawbacks in the mechanical behaviour in combination with high costs. Thermal compensation by special design also raises cost and complexity. The application of materials with identical thermal expansion coefficients in combination with appropriate mechanical properties can solve this problem at significantly reduced costs. Concrete is a promising material for the whole machine structure under these circumstances. In contrast to base frames moving parts need to have a lightweight design thus requiring a high level of specific stiffness. Concrete with a specific stiffness close to steel is an interesting material for the design of movable components coming up with dynamic properties comparable to welded steel structures. Additionally a high material strength is needed in lightweight design. Concrete shows high compressional strength but is sensitive to tensile stress that cannot be fully eliminated. Therefore notch effects and stress concentrations need to be avoided. Reinforcement by implementation of steel or carbon fibres is not applicable since they come with thermal inhomogeneity. An alternative reinforcement can also be done by organofunctional sol-gel silane coating.



Gräser, Philipp; Linß, Sebastian; Zentner, Lena; Theska, René
Large stroke ultra-precision planar stage based on compliant mechanisms with polynomial flexure hinge design. - In: Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology, (2017), S. 107-108

Precision stages based on compliant mechanisms have many advantages over conventional linear guides. Therefore they are widely used in many applications in precision engineering, measurement technology, semiconductor industry and space technology. The motion range of high-precise compliant mechanisms is often limited to some micrometres up to submillimetre. This contribution presents the development in the design of a compliant mechanism allowing a bidirectional planar motion with a large stroke of up to 10 mm and a straight line deviation of only a few micrometres. Based on the outstanding reproducibility of the path of motion, positioning and measurement of large objects with accuracy in the nanometre range have been realised.



Schienbein, Ralf; Theska, René
A contribution to the development of multiaxial nanopositioning machines. - In: Proceedings of the 17th International Conference of the European Society for Precision Engineering and Nanotechnology, (2017), S. 113-114

Existing long range nanopositioning and nanomeasuring machines are based on three independent linear movements in three rectangular axes. This in combination with the specific nature of optical and mechanical sensors and tools limits the application of those machines in terms of addressable part geometries. State of the art multiaxial precision machines solve this problem but do not fulfil the requirements in positioning accuracy. This article contributes to the development of multiaxial machine structures allowing e.g. 5-axis operation while keeping the precision in the nanometre range. The knowledge base of existing nanopositioning and nanomeasuring machines as well as multiaxial precision machines is collected within systematic structural search to give a broad overview. The accumulated database is than changed over in an abstract format of technical principles and analysed to derive general solution principles for multiaxial nanopositioning machines. A parameter based dynamic evaluation system with quantifiable technological parameters is performed to identify general solution concepts. State of the art machines are evaluated based on this classification system in terms of the implementation of multi-axial movements. After all, the knowledge gained is formed into general rules for the verification and optimization of constructive solutions for multiaxial nanopositioning machines.



Gräser, Philipp; Linß, Sebastian; Zentner, Lena; Theska, René
Design and experimental characterization of a flexure hinge-based parallel four-bar mechanism for precision guides. - In: Microactuators and Micromechanisms, (2017), S. 139-152

http://dx.doi.org/10.1007/978-3-319-45387-3_13
Gräser, Philipp; Linß, Sebastian; Zentner, Lena; Theska, René
Increasing the stroke of an ultra-precise compliant mechanism with optimised flexure hinge contours. - In: Proceedings of the 16th International Conference of the European Society for Precision Engineering and Nanotechnology, ISBN 978-0-9566790-8-6, (2016), S. 487-488

This paper presents the investigations of the influences of the flexure hinges contours in compliant linkage mechanisms for precision engineering applications. Especially the influence on the precision of the path of motion and the stroke of the compliant mechanism is reflected. Based on previous investigations on optimised single flexure hinges [1] the validity of the proposed guidelines is analysed for an interconnection of flexure hinges in one mechanism. A parallel crank mechanism is used as an example for such a compliant rectilinear guiding mechanism. The parameters of the approximated linear motion are compared for the rigid-body model, compliant analytic model, FEM simulation models and measurements on manufactured prototypes.



Wohlfahrt, Fabian; Theska, René
Force controlled dilatometer. - In: Proceedings of the 16th International Conference of the European Society for Precision Engineering and Nanotechnology, ISBN 978-0-9566790-8-6, (2016), P7.08, insges. 2 S.

Gräser, Philipp; Linß, Sebastian; Zentner, Lena; Theska, René
Synthesis and investigation of a compliant linkage mechanism for precision guides :
Synthese und Untersuchung eines nachgiebigen Koppelmechanismus für Präzisionsführungen. - In: Zweite IFToMM D-A-CH Konferenz 2016, 25. - 26. Februar 2016, Universität Innsbruck, (2016), insges. 8 S.

Smirnov, Nikolai V.; Latyev, Svjatoslav M.; Theska, René
Enhanced adjustment methods for optical rotary encoders. - In: Optical measurement systems for industrial inspection IX, 2015, 952535, insges. 8 S.