Sie haben Interesse an einer Projekt-, Bachelor- oder Masterarbeit? Aktuelle Themen finde Sie hier.

Studentische Arbeiten

Anzahl der Treffer: 245
Erstellt: Mon, 22 Apr 2024 23:04:46 +0200 in 0.0976 sec


Reiche, Marius;
Experimentelle Untersuchung von magnetoaktiven Elastomeren mit mehrpoliger Magnetisierung. - Ilmenau. - 109 Seiten
Technische Universität Ilmenau, Diplomarbeit 2021

Magnetoaktive Elastomere (MAE) bestehen aus einer elastischen Matrix bzw. einem Elastomer, in welchem sich magnetisch weiche und/oder magnetisch harte Partikel befinden. Durch ein äußeres Magnetfeld kann das Verhalten und die mechanischen Eigenschaften dieser Materialien beeinflusst werden. Die folgende Arbeit behandelt den Einfluss homogener Magnetfelder auf die statische Durchbiegung mehrpolig magnetisierter MAE-Balken. Hierbei werden Proben mit einem Anteil von 20 Vol.-% magnetisch harten Partikeln (NdFeB) und 20 Vol.-% magnetisch weichen Partikeln (CIP) untersucht, welche einen Südpol in der Mitte und die Nordpole jeweils an ihren Enden besitzen. Die untersuchten Proben haben teilweise unterschiedliche Eigenschaften bzw. Herstellungsarten. Für verschiedene Magnetfeldstärken wird die statische Durchbiegung der MAE-Balken experimentell ermittelt, sowie durch theoretische Betrachtung mit Hilfe der Euler-Bernoulli Theorie untersucht. Die Erkenntnisse aus den Untersuchungen der statischen Durchbiegung der MAE-Balken werden genutzt, um Lokomotionssysteme mit mehrpolig magnetisierten MAE zu entwickeln. Die Fortbewegung der drei Lokomotionssysteme basiert hierbei auf der periodischen Durchbiegung der mehrpolig magnetisierten MAE-Balken, welche durch ein wechselndes Magnetfeld einer externen oder internen Magnetfeldquelle hervorgerufen wird. Das Prinzip unsymmetrischer Reibung sorgt dafür, dass eine Bewegung in Richtung der geringeren Reibung entsteht. Ein Funktionsnachweis der entwickelten Lokomotionssysteme wird über die experimentelle Untersuchung der Geschwindigkeit für die verschiedenen Erregungsfrequenzen des Magnetfeldes erbracht.



Meinert, Malte;
Modellbildung und Simulation des dynamischen Verhaltens von Masten bei Einsatz von schwingungsmindernden Maßnahmen. - Ilmenau. - 53 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2021

Im Rahmen dieser Arbeit wurden schwingungsmindernde Maßnahmen und deren Wirksamkeit betrachtet. Dabei wurde zunächst verschiedene Dämpferarten betrachtet, welche heutzutage in hohen Strukturen zum Einsatz kommen. Hierzu wurden besonders Windkraftanlagen untersucht, welche durch starke Wind- oder Erdbebeneinwirkung in Schwingung versetzt werden können. Im zweiten Teil der Arbeit wurde ein Mehrkörpermodell einer Windkraftanlage in der Simulationssoftware Alaska Modeller Studio erstellt. Es wurde die schwingungsmindernde Wirkung zwei verschiedener Dämpfer unter Windeinwirkung getestet und miteinander verglichen.



Eckart, David;
Entwicklung eines Probenschüttlers. - Ilmenau. - 90 Seiten
Technische Universität Ilmenau, Masterarbeit 2021

In dieser Arbeit wird ein Probenschüttler entwickelt, welcher durch seinen Aufbau einen vibrationsarmen Betrieb gewährleistet. Hierfür werden Simulationen der Dynamik eines Mehrkörpersystems in der Software alaska durchgeführt. Es werden die Methoden des statischen und dynamischen Auswuchtens angewandt. Mit dem statischen Auswuchten kann kein vibrationsarmer Betrieb besonders im hohen Drehzahlbereich erreicht werden. Beim dynamischen Auswuchten kann dies im gewünschten Drehzahlbereich realisiert werden. Für die unterschiedlichen Beladungen wurde ein Prinzip mit zwei Ausgleichsmassen entwickelt. Dazu wurde eine Verstelleinrichtung konzipiert. Aus Machbarkeitsgründen wurde aus dem Lösungsansatz mit der verstellbaren unteren Ausgleichsmasse ein technisches Prinzip entwickelt. Ein besonderer Vorteil dieses Aufbaues ist, dass die Einprägung der orbitalen Bahn und die Verstellung der Masse über einen Motor und einen Elektromagneten realisiert werden. Der Auswuchtzustand kann anhand der auftretenden Beschleunigungen ermittelt werden, wodurch ein automatisiertes Auswuchten des Probenschüttlers möglich ist. Es liegt eine Konstruktion für einen Prototyp vor, mit dem ein vibrationsarmer Betrieb demonstriert werden kann.



Lechner, Leo;
Entwurf und Optimierung eines schnellen Federantriebs. - Ilmenau. - 93 Seiten
Technische Universität Ilmenau, Masterarbeit 2021

Ziel dieser Masterarbeit ist die Entwicklung und Untersuchung eines schnellen Federantriebs für die Beschleunigung eines Massestücks zur Realisierung eines unelastischen Stoßes. In der einschlägigen Literatur finden sich vorrangig Berechnungsgrundlagen für das zyklische Bewegungsverhalten von Feder-Masse-Systemen, die Masse der Feder wird dabei meist vernachlässigt. Andere Methoden berechnen nur die instantane Geschwindigkeit der angetriebenen Masse, betrachten aber nicht das Zeit-Weg-Verhalten derselben. Aus diesem Grund werden bestehende Berechnungsansätze aufgegriffen und für den vorliegenden Fall einer schnellen nichtzyklischen geradlinigen Bewegung erweitert. Die verbreitetsten Federtypen werden verglichen und anhand geeigneter Vergleichsmethoden wird eine für den Anwendungsfall passende Wahl getroffen. Ein Prototyp wird konstruiert und mithilfe einer Mehrkörpersimulation wird das Bewegungsverhalten des Antriebs analysiert. Die Mehrkörpersimulation dient als Ausgangspunkt für eine Finite-Elemente-Simulation mit expliziter Lösung des Zeitverlaufs zur Analyse des unelastischen Stoßes. Die Ergebnisse aus der analytischen Betrachtung und der Mehrkörpersimulation werden miteinander verglichen. Ein Versuchsaufbau für die Validierung dieser Berechnungsdaten wird vorgestellt.



Lilge, Tom;
Entwicklung eines adaptiven Beschleunigungssensors basierend auf dynamisch erregtem magnetosensitivem Material. - Ilmenau. - 114 Seiten
Technische Universität Ilmenau, Masterarbeit 2021

Als magnetosensitive Elastomere (MSE) bezeichnet man eine Gruppe intelligenter Werkstoffe. Sie bestehen aus einer elastischen Trägermatrix mit eingebundenen weich- und/oder hartmagnetischen Mikropartikeln. Unter dem Einfluss äußerer Magnetfelder lassen sich die mechanischen Eigenschaften dieser hybriden Materialien variieren, was sie besonders für den Einsatz in adaptiven Aktoren und Sensoren auszeichnet. Die vorliegende Masterarbeit befasst sich mit der Entwicklung eines Beschleunigungssensors, der ein balkenförmiges, permanentmagnetisches MSE mit hybrider Partikelfüllung als Funktionselement enthält. Dieses lässt sich aufgrund der eingebundenen magnetischen Partikel durch ein äußeres oszillierendes Magnetfeld in mechanische Schwingung versetzen. Die Schwingungskenngrößen des MSE lassen sich durch das Anlegen eines äußeren uniformen Magnetfeldes reversibel beeinflussen. Im Rahmen der Vorversuche wird ein Laboraufbau entworfen, an dem das Schwingverhalten des MSE-Balkens bei elektromagnetischer und Beschleunigungsanregung untersucht werden kann. Dies geschieht sowohl ohne als auch mit äußerlich angelegtem Magnetfeld. Basierend auf den gewonnenen Erkenntnissen wird anschließend der Prototyp eines Beschleunigungssensors mit einem lagegeregelten MSE als Funktionselement entwickelt und in einem Laboraufbau realisiert. Der Funktionsnachweis für das erarbeitete Sensorprinzips wird anhand praktischer Versuche erbracht. Dabei werden charakteristische Betriebsgrößen herausgearbeitet und wichtige Ansatzpunkte für die Weiterentwicklung des Systems definiert. Es wird gezeigt, dass der Beschleunigungssensor im vorliegenden Entwicklungsstadium in der Lage ist, die Wirkung konstanter Beschleunigungen auf das MSE-Funktionselement zu kompensieren.



Tang, Xiaowen;
Development and evaluation of sensor systems for human motion analysis with artificial intelligence. - Ilmenau. - 77 Seiten
Technische Universität Ilmenau, Masterarbeit 2021

Die Analyse menschlicher Bewegungen kann in vielen Bereichen eingesetzt werden, z.B. in der Mensch-Computer-Interaktion, der medizinischen Diagnose und der Spieleunterhaltung. Sie ist auch ein wesentlicher Bestandteil der Sturzrisikobewertung zur Sturzprävention bei älteren Menschen und Patienten. In dieser Arbeit werden zwei Sensorsysteme für die menschliche Bewegungsanalyse entwickelt und evaluiert. Der erste Ansatz basiert auf Initialsensoren, die können am menschlichen Körperteil angebracht werden und messen die Beschleunigung, Winkelgeschwindigkeit und Magnetfelder im lokalen Koordinatensystem. Das andere System basiert auf Kameras und schätzt die Position der Keypoints (Gelenke) des menschlichen Körpers in den Videos mit Hilfe von Deep Neural Networks (DNN). Die auf Supervised Learning basierenden Klassifikatoren k-Nearest Neighbours (k-NN) und Support Vector Machines (SVM) werden auf die von beiden Ansätzen gesammelten Daten angewendet, um normale und abnormale Gangmuster zu unterscheiden. Durch das Testen verschiedener Informationen als Eingabe erreichen beide Systeme durchschnittliche Klassifizierungsgenauigkeit von über 90 %, unabhängig davon, ob die für die Klassifizierung verwendeten Daten von einem einzelnen Probanden oder von mehreren Probanden sind.



Dittloff, Maximilian;
Konstruktion und Optimierung eines Messelements zur Sensierung der Koppelkräfte zwischen PKW und Starrdeichselanhänger. - Ilmenau. - 70 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2021

Das fahrdynamische Verhalten eines Fahrzeuggespanns bestehend aus PKW und Anhänger wird durch das Wirken von mechanischen Koppelkräften beeinflusst. Diese Koppelkräfte beeinflussen maßgeblich sicherheitskritische Fahrsituationen, wie das Aufschaukeln der Fahrezeugkombination oder das Einknicken bei extremen Bremsmanövern. Aufgrund von nicht alltäglichem Gebrauch, können viele Fahrer*innen das Verhalten des Fahrzeuggespanns in Gefahrensituationen nicht antizipieren und dementsprechend handeln. Durch den Entwicklungstrend von Elektrifizierung von Fahrzeugen und Effizienzsteigerung von Antrieben, werden neue Einheiten von Anhängern entwickelt, die eigene Antriebe oder Rekuperationsvorrichtungen besitzen. Daraufhin wird die Fahrdynamik des Fahrzeuggespanns zusätzlich mit weiteren fahrdynamischen Eigenschaften beeinflusst. Aufgrund mangelnder Möglichkeiten die Koppelkräfte zu messen, soll zu diesem Zweck ein Koppelkraftaufnehmer zur Messung der Koppelkräfte entwickelt und dessen Messarme optimiert werden. In der vorliegenden Arbeit wird zunächst das zu Grunde liegende Ersatzmodell des Biegebalkens aus der Technischen Mechanik erläutert. Anhand des Modells wurde eine erste grobe Abschätzung der Verformung der Messarme vorgenommen. Weiterhin wurden die Grundlagen der Materialermüdung und deren Einflussfaktoren behandelt. Aufgrund der konstruktiven Diskrepanz zwischen den echten Messarmen und dem Ersatzmodell wurde im nächsten Schritt die FEM-Simulation angewendet und die nötigen Kenntnisse erläutert. Im Zusammenhang wurde das Originalmodell des Koppelkraftaufnehmers beschrieben. Daraufhin wurde auf die Anforderungen an die Fähigkeiten des Aufnehmers und dessen technischen Spezifikationen eingegangen, die auf einer gesetzlichen Richtlinie basieren. Im Zuge der Durchführung wurde der Koppelkraftaufnehmer Studien zur FE-Netzuntersuchung und Genauigkeit der Ergebnisse anhand drei konstruierten Varianten des Koppelkraftaufnehmers unterzogen. Im Kontext der Auswertung stellte sich die dritte Variante des Aufnehmers als geeigneteste Variante heraus, denn diese Variante erlangte die höchste Lebensdauer und größte Dehnung in der Messtelle. Desweiteren wurde ein Pareto-Optimum zwischen der Ergebnisgenauigkeit von FEM-Belastungssimulationen und dessen Rechenaufwand gefunden.



Nauth, Magnus;
Experimentell-messtechnische Untersuchungen der mechanischen Eigenschaften von thermosensitiven Elastomeren (TSE). - Ilmenau. - 39 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2021

Thermosensitive Elastomere (TSE) sind Verbundwerkstoffe, deren Materialeigenschaften durch Temperaturveränderung gezielt beeinflusst werden können. Das in dieser Bachelorarbeit verwendete TSE-Material besteht aus einer nachgiebigen Silikon-Matrix als Basis, in der thermoplastische Polycaprolacton-Partikel (PCL) eingebettet sind. Der Gegenstand dieser Arbeit sind weiterführende Untersuchungen der mechanischen Materialeigenschaften von TSE-Proben mit verschiedenen PCL-Konzentrationen. Kernpunkt sind die Messung des Einflusses der Temperatur auf das Zug-Druck-Verhalten und die Schwingungseigenschaften sowie die Nutzbarkeit des materialspezifischen Shape-Memory-Effektes (SME). Die Versuche bestätigen das temperaturabhängige Materialverhalten im Bereich des Schmelzpunktes von PCL zwischen 58 ˚C - 60 ˚C. In diesem Temperaturbereich wurde eine Reduzierung des Spannungs-Dehnungs-Verlaufs um bis zu 50 % sowie eine Veränderung von Dämpfung und Resonanz festgestellt, was auf das Schmelzen der PCL-Partikel zurückgeführt werden kann. Der SME ermöglicht formvariable plastische Verformung des TSE Materials (z.B. Längenänderung, Krümmung, Formeinprägung) durch temporäres Erhitzen der Proben. Der Effekt ist reversibel, wiederholbar und bietet großes Anwendungspotential, welches in einem ersten Greifer-Demonstrator angedeutet wird.



Kreshna, Kreshna;
Experimental investigation of a vibration-driven locomotion system based on a multistable tensegrity structure . - Ilmenau. - 85 Seiten
Technische Universität Ilmenau, Masterarbeit 2021

In dieser Arbeit wird die Anwendung von multistabilen Tensegrity Strukturen zur Realisierung einer vibrationsbasierten Fortbewegung untersucht. Hierbei liegt der Fokus auf der experimentellen Verifizierung des Lokomotionsverhaltens an einem Prototyp. Besonderes Augenmerk liegt auf der Entwicklung, Inbetriebnahme dieses Prototyps und der konstruktiven Realisierung von Tensegrity Strukturen. Neben der Untersuchung der multistabilen Charakteristik wird eine potentielle Aktuierungsstrategie zur Realisierung eines kontrollierten Gleichgewichtslagenwechsels betrachtet. Weiterhin wird der Einfluss verschiedener Aktuator Größen und der Gleichgewichtskonfiguration auf der Bewegungsverhalten in Experimenten untersucht. Als Umgebung wird ein horizontaler Untergrund vorausgesetzt und die resultierenden Bewegungen optisch ausgewertet. Die Ergebnisse bestätigen die vorteilhaften Eigenschaften multistabiler nachgiebiger Tensegrity Strukturen zur Realisierung von vibrationsbasierter Fortbewegung.



Dörnyei, Kristóf;
Entwicklung eines Beschleunigungssensors auf Basis von magnetosensitiven Elastomeren. - Ilmenau. - 90 Seiten
Technische Universität Ilmenau, Masterarbeit 2020

Ziel dieser Masterarbeit ist die Entwicklung eines Beschleunigungssensors mit einstellbarer Sensitivität auf Basis von schwingenden magnetosensitiven Elastomeren (MSE). Durch eine im System integrierte Magnetfeldquelle wie eine elektromagnetische Spule sollen die Schwingungsparameter des MSE-Körpers eingestellt und die Antwort des Systems auf Erregung durch die Magnetfeldänderung erfasst werden. Ein kompakter Sensorprototyp und Versuchsaufbau wurden anhand theoretischer und numerischer Ergebnisse entwickelt. Für das Erzeugen des Magnetfeldes wurde eine elektromagnetische Spule ausgelegt. Ein einseitig eingespannter MSE-Balken wurde als Funktionselement des Sensors dimensioniert. Durch Finite-Elemente-Simulationen wurden die statische Auslenkung des MSE-Balkens und der Einfluss des Balkens auf das Magnetfeld der Spule analysiert. Die optimalen Ausrichtung und Position der Hall-Sensoren konnte dadurch bestimmt werden. Bei harmonischer Erregung am Gehäuse wurde die Vergrößerungsfunktion des Magnetfeldes in der Form deltaB/B_0 über die Erregerfrequenz für verschiedene Stromstärken aufgezeichnet und die Wirkung des Magnetfeldes auf die erste Eigenfrequenz des MSE-Balkesn untersucht. Bei Erregung mittels einer Voicecoil wurde der Sensor arbiträr erregt und dessen Antworten untersucht und mit dem aus der harmonischen Erregung verglichen.