Publikationen am Institut für Chemie und Biotechnik

Anzahl der Treffer: 879
Erstellt: Thu, 25 Apr 2024 23:11:47 +0200 in 0.1037 sec


Szántó, Géza; Pritzke, Pia; Kluitmann, Jonas; Köhler, Michael; Csáki, Andrea; Fritzsche, Wolfgang; Csarnovics, István; Bonyár, Attila
Optimization of the bulk refractive index sensitivity of silver nanoprisms. - In: Advanced optical materials, ISSN 2195-1071, Bd. 0 (2024), 0, 2302967, S. 1-11

The sensitivity and optical properties of silver nanoprisms (triangular plates with round-truncated corners) are investigated in this paper. Results of boundary element method simulations are compared with experimental results and literature data. Based on electron microscopy images of the synthesized nanoprisms, a single-particle model is set up for simulations with three running parameters: edge length, thickness, and roundness (defined as the radius of the circumscribed circle divided by the edge length). These geometric parameters can be optimized during chemical synthesis to create sensors with improved sensitivity. The effect of biomolecular layers is also investigated. As a novel approach to improve the agreement between the simulated and experimentally measured extinction spectra, the single-particle model is extended to consider the variation of the prisms' parameters in the form of distributions. The resulting extinction cross-section spectra correspond well with the experimental data. The calculated bulk refractive index sensitivity is 670 nm/RIU (RIU stands for refractive index unit) for the single particle model (length = 150 nm, thickness = 10 nm, and roundness = 0.1), while (690 ± 5) nm/RIU for the extended model. The presented model and obtained relations between sensitivity and geometry can be effectively used to design and optimize the fabrication technologies for silver nanoprism-based sensing applications.



https://doi.org/10.1002/adom.202302967
Zeußel, Lisa; Chowdhary, Shefali; Haocheng, Wu; Kumar, Vipan; Singh, Sukhdeep
Sustainable harnessing of waste polycarbonate for synthesizing activated furans to generate Stenhouse adducts on polymer surface. - In: Chemistry, ISSN 1861-471X, Bd. 0 (2024), 0, e202400369, insges. 21 S.

Plastics are versatile materials, offering lightweight, durable, and affordable solutions across various industries. However, their non-degradable nature poses challenges by end of their life. This study presented an innovative carbonyl extraction method to utilize waste poly(bisphenol A carbonate) (PC) as reaction precursor to synthesis of activated furan as precursor for photoswitchable Stenhouse adducts. This innovative chemical strategy not only generated N,N’-functionalized barbiturates but also provided an eco-friendly and cost-effective alternative to traditional synthesis methods. The method presented hereby not only promotes sustainability by repurposing waste polycarbonate as carbonyl equivalent under green conditions but also yielded reusable bisphenol A (BPA). Furthermore, the derived activated furans exhibited their functionality by forming colored donor-acceptor Stenhouse adducts (DASAs) on aminated polymer surfaces. This work demonstrated a transition from a linear plastics economy toward a circular one, highlighting the potential of plastic waste as a resource for creating materials with improved properties.



https://doi.org/10.1002/asia.202400369
Prylutska, Svitlana; Grebinyk, Anna; Ponomarenko, Stanislav; Gövem, Defne; Chumachenko, Vasyl; Kutsevol, Nataliya; Petrovsky, Mykola; Ritter, Uwe; Frohme, Marcus; Piosik, Jacek; Prylutskyy, Yuriy
Toxicity of water-soluble D-g-PNIPAM polymers in a complex with chemotherapy drugs and mechanism of their action in vitro. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 25 (2024), 5, 3069, S. 1-15

The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology-Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated.



https://doi.org/10.3390/ijms25053069
Nguyen, Thi-Huong; Chen, Li-Yu; Khan, Nida Zaman; Lindenbauer, Annerose; Bui, Van-Chien; Zipfel, Peter F.; Heinrich, Doris
The binding of the SARS-CoV-2 spike protein to platelet factor 4: a proposed mechanism for the generation of pathogenic antibodies. - In: Biomolecules, ISSN 2218-273X, Bd. 14 (2024), 3, 245, S. 1-14

Pathogenic platelet factor 4 (PF4) antibodies contributed to the abnormal coagulation profiles in COVID-19 and vaccinated patients. However, the mechanism of what triggers the body to produce these antibodies has not yet been clarified. Similar patterns and many comparable features between the COVID-19 virus and heparin-induced thrombocytopenia (HIT) have been reported. Previously, we identified a new mechanism of autoimmunity in HIT in which PF4-antibodies self-clustered PF4 and exposed binding epitopes for other pathogenic PF4/eparin antibodies. Here, we first proved that the SARS-CoV-2 spike protein (SP) also binds to PF4. The binding was evidenced by the increase in mass and optical intensity as observed through quartz crystal microbalance and immunosorbent assay, while the switching of the surface zeta potential caused by protein interactions and binding affinity of PF4-SP were evaluated by dynamic light scattering and isothermal spectral shift analysis. Based on our results, we proposed a mechanism for the generation of PF4 antibodies in COVID-19 patients. We further validated the changes in zeta potential and interaction affinity between PF4 and SP and found that their binding mechanism differs from ACE2-SP binding. Importantly, the PF4/SP complexes facilitate the binding of anti-PF4/Heparin antibodies. Our findings offer a fresh perspective on PF4 engagement with the SARS-CoV-2 SP, illuminating the role of PF4/SP complexes in severe thrombotic events.



https://doi.org/10.3390/biom14030245
Köhler, Michael; Ehrhardt, Linda; Günther, Mike; Böhme, Manfred; Cao-Riehmer, Jialan
Low abundant bacteria reflect soil specificity - analysis of bacterial communities from archaeological investigation of pre-industrial saline ash deposits of Bad Dürrenberg (Germany). - In: Environments, ISSN 2076-3298, Bd. 11 (2024), 3, 42, S. 1-20

Six soil samples from three layers of an archaeological investigation profile from a pre-industrial ash deposit place have been investigated by NGS analyses of 16 S rRNA. The three pairs of sample originate from top soil (internal reference), from an intermediate ash layer and from a lower ash layer, formed about two centuries ago. In addition to general abundant bacteria, special genera known as halophilic or alkaline-tolerant have been found as expected from the history of the place and from the measured pH-value and conductivity measurements. The close relations between samples of pairs and the differences between the three soil layers are clearly indicated by abundance correlation and PCA-diagrams. Comparative PCA correlation plots including samples from an archaeological excavation site dedicated to pre-industrial coal mining illustrate the high distinguishability of investigated soils. These relations are particular clearly shown when lower abundant bacteria are regarded. The investigations are a further example for the “ecological memory of soil” reflecting the strong human impact on this pre-industrial embossed place.



https://doi.org/10.3390/environments11030042
Küstner, Merle Johanna; Eckstein, Diana; Brauer, Dana; Mai, Patrick; Hampl, Jörg; Weise, Frank; Schuhmann, Berit; Hause, Gerd; Glahn, Felix; Foth, Heidi; Schober, Andreas
Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro. - In: Archives of toxicology, ISSN 1432-0738, Bd. 98 (2024), 4, S. 1061-1080

We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 10^5 (BaSO4) and 1.49 × 10^6 (TiO2) particles/cm^3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm^2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm^2 resulted in mild, reversible damage (˜ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm^2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.



https://doi.org/10.1007/s00204-023-03673-3
Horak, Iryna; Skaterna, Tetiana; Lugovskyi, Serhii; Krysiuk, Iryna; Tykhomyrov, Artem; Prylutska, Svitlana; Tverdokhleb, Nina; Senenko, Anton; Cherepanov, Vsevolod; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe; Prylutskyy, Yuriy
Antimetastatic lung cancer therapy using alkaloid Piperlongumine noncovalently bound to С60 fullerene. - In: Journal of drug delivery science and technology, Bd. 92 (2024), 105275, S. 1-10

A novel nanoformulation, C60 fullerene loaded with a plant alkaloid Piperlongumine (PL) molecules (C60-PL nanocomplex), as a potential drug for the treatment of highly metastatic lung cancer was created and characterized by using ultrasonic technology, computer simulation, atomic force and scanning tunneling microscopy. The aim of the study was to evaluate the antimetastatic potential of PL alone and the C60-PL nanocomplex using Lewis lung carcinoma (LLC) cell line as a model. Evidence has been obtained that the 2:1C60-PL nanocomplex is a potent agent capable of effectively reducing the survival, migration and invasion of LLC cells in vitro, as well as tumor growth and metastasis in vivo compared to free PL. These effects in cell behavior were shown to be associated with an increased Bax expression and high level of cleaved PARP confirming the proapototic potential of C60-PL nanocomplex as well as down-regulation of the mRNA of epithelial-mesenchymal transition regulator Twist1 and cancer stem cell marker CD44, a reduced level of phosphorylated mTOR and adaptor protein Ruk/CIN85. Histological analysis of the lung tissue of LLC-bearing mice showed that in animals that received the C60-PL nanocomplex, the regression of metastases prevailed over their growth. The obtained results allow to conclude that the proposed C60-PL nanocomplex represents a promising drug for the treatment of metastatic lung cancer.



https://doi.org/10.1016/j.jddst.2023.105275
Grebinyk, Anna; Prylutska, Svitlana; Grebinyk, Sergii; Prylutskyy, Yuriy; Ritter, Uwe; Matyshevska, Olga; Dandekar, Thomas; Frohme, Marcus
Toward photodynamic cancer chemotherapy with C60-Doxorubicin nanocomplexes. - In: Nanomaterials for photodynamics therapy, (2023), S. 489-522

Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. The dual functionality of C60 as a photosensitizer and a drug nanocarrier sets an opportunity to improve the efficiency of chemotherapeutic drugs for cancer cells. Pristine C60 demonstrates time-dependent accumulation with predominant mitochondrial localization in cancer cells. Nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios improve the efficiency of cell treatment, complementing it with photodynamic approach. The cooperative enhancement interactions between mechanisms of chemo- and photodynamic therapies contribute to the obtained synergistic effect (namely “1+1>2”). A strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation indicates that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.



https://doi.org/10.1016/B978-0-323-85595-2.00005-0
Jaster, Jonas; Dreßler, Elias; Geitner, Robert; Groß, Gregor Alexander
Synthesis and spectroscopic characterization of furan-2-carbaldehyde-d. - In: Molbank, ISSN 1422-8599, Bd. 2023 (2023), 2, M1654, S. 1-9

Here, we present a protocol for the one-step synthesis of the title compound in quantitative yield using adapted Vilsmeier conditions. The product was characterized by 1H-,2H-,13C-NMR-, as well as IR and Raman spectroscopy. Spectral data are given in detail.



https://doi.org/10.3390/M1654
Eckstein, Daniel; Schumann, Berit; Glahn, Felix; Krings, Oliver; Schober, Andreas; Foth, Heidi
Comparison of a 3D co-culture and a mini organ culture by testing barium sulphate and titanium dioxide nanoparticle aerosols. - In: Naunyn-Schmiedeberg's archives of pharmacology, ISSN 1432-1912, Bd. 396 (2023), 1, P055, S. S37

https://doi.org/10.1007/s00210-023-02397-6