Publikationen am Institut für Chemie und Biotechnik

Anzahl der Treffer: 878
Erstellt: Wed, 24 Apr 2024 23:09:55 +0200 in 0.0863 sec


Marx-Blümel, Lisa; Marx, Christian; Schober, Andreas; Beck, James F.
In vitro-Amplifikation humaner hämatopoetischer Stammzellen im 3D-System. - In: Biospektrum, ISSN 1868-6249, Bd. 28 (2022), 5, S. 489-492

A promising strategy to increase the numbers of hematopoietic stem cells (HSCs) for clinical applications, like stem cell transplantation, is offered by advanced in vitro culture systems. We developed artificial 3D bone marrow-like scaffolds made of polydimethylsiloxane (PDMS) mimicking the natural HSC niche in vitro. These 3D PDMS scaffolds in combination with an optimized culture medium allow the amplification of high numbers of undifferentiated HSCs by activating specific molecular signaling pathways.



https://doi.org/10.1007/s12268-022-1798-2
Huang, Tianbai; Kupfer, Stephan; Richter, Martin; Gräfe, Stefanie; Geitner, Robert
Bidentate Rh(I)-phosphine complexes for the C-H activation of alkanes: computational modelling and mechanistic insight. - In: ChemCatChem, ISSN 1867-3899, Bd. 14 (2022), 18, e202200854, S. 1-9

The C-H activation and subsequent carbonylation mediated by metal complexes, i. e., Rh(I) complexes, has drawn considerable attention in the past. To extend the mechanistic insight from Rh complexes featuring monodentate ligands like P(Me)3 towards more active bisphosphines (PLP), a computationally derived fully conclusive mechanistic picture of the Rh(I)-catalyzed C-H activation and carbonylation is presented here. Depending on the nature of the bisphosphine ligand, the highest lying transition state (TS) is associated either to the initial C-H activation in [Rh(PLP)(CO)(Cl)] or to the rearrangement of the chloride in [Rh(PLP)(H)(R)(Cl)]. The chloride rearrangement was found to play a key role in the subsequent carbonylation. A set of 20 complexes of different architectures was studied, in order to fine tune the C-H activation in a knowledge-driven approach. The computational analysis suggests that a flexible ligand architecture with aromatic rings can potentially increase the performance of Rh-based catalysts for the C-H activation.



https://doi.org/10.1002/cctc.202200854
Cao-Riehmer, Jialan; Russo, David A.; Xie, Ting; Groß, Gregor Alexander; Zedler, Julie
A droplet-based microfluidic platform enables high-throughput combinatorial optimization of cyanobacterial cultivation. - In: Scientific reports, ISSN 2045-2322, Bd. 12 (2022), 15536, S. 1-12

Cyanobacteria are fast-growing, genetically accessible, photoautotrophs. Therefore, they have attracted interest as sustainable production platforms. However, the lack of techniques to systematically optimize cultivation parameters in a high-throughput manner is holding back progress towards industrialization. To overcome this bottleneck, here we introduce a droplet-based microfluidic platform capable of one- (1D) and two-dimension (2D) screening of key parameters in cyanobacterial cultivation. We successfully grew three different unicellular, biotechnologically relevant, cyanobacteria: Synechocystis sp. PCC 6803, Synechococcus elongatus UTEX 2973 and Synechococcus sp. UTEX 3154. This was followed by a highly-resolved 1D screening of nitrate, phosphate, carbonate, and salt concentrations. The 1D screening results suggested that nitrate and/or phosphate may be limiting nutrients in standard cultivation media. Finally, we use 2D screening to determine the optimal N:P ratio of BG-11. Application of the improved medium composition in a high-density cultivation setup led to an increase in biomass yield of up to 15.7%. This study demonstrates that droplet-based microfluidics can decrease the volume required for cyanobacterial cultivation and screening up to a thousand times while significantly increasing the multiplexing capacity. Going forward, microfluidics have the potential to play a significant role in the industrial exploitation of cyanobacteria.



https://doi.org/10.1038/s41598-022-19773-6
Cao-Riehmer, Jialan; Pliquett, Uwe; Yang, Lin; Wiedemeier, Stefan; Cahill, Brian; Köhler, Michael
Contactless optical and impedimetric sensing for droplet-based dose-response investigations of microorganisms. - In: Sensors and actuators, ISSN 0925-4005, Bd. 372 (2022), 132688

The principle of droplet-based microfluidics was used for the characterization of dose/response functions of the soil bacteria Rhodococcus sp. and Chromobacterium vaccinii using a combination of optical and electrical sensors for the detection of bacterial growth and metabolic activity. For electrical characterization, a micro flow-through impedance module was developed which assessed the response of bacterial populations inside 500 nL fluid segments without direct galvanic contact between the electrodes and the electrolyte. It was found that the impedance sensor can detect an increase in cell density and is particularly suited for monitoring the metabolic response due to changes in the cultivation medium inside the separated fluid segments. Due to this sensitivity, the sensor is useful for investigating growing bacteria or cell cultures in small fluid compartments and obtaining highly resolved dose-response functions by microfluid segment sequences. The impedimetric data agree well with the optical data concerning the characteristic response of bacteria populations in the different concentration regions of heavy metal ions. However, the sensor supplies valuable complementary data on metabolic activity in case of low or negligible cell division rates.



https://doi.org/10.1016/j.snb.2022.132688
Menzel, Roberto; Maier, Tanja; Täuscher, Eric; Spruner von Mertz, Franziska; Freiberger, Emma; Golz, Christopher; Fruth, Lothar; Pahl, Ina; Hauk, Armin
Structure elucidation and toxicological evaluation of cyclic Polyethersulfone oligomers present in extracts of membrane filters. - In: Polymer engineering & science, ISSN 1548-2634, Bd. 62 (2022), 9, S. 2817-2825

Polyethersulfone (PES) is a widely used polymer in consumer and technical products. An important application is PES membranes used in the biopharmaceutical industry for sterilizing-grade filtration and for filtration of food and beverages. For both uses, detailed information about migrating compounds that can be extracted from the polymeric material into a liquid must be gathered. In the pharmaceutical industry, comprehensive extractables studies are required for contact materials, and the data is used in the qualification of the process equipment. PES is generated via polycondensation, which forms cyclic oligomers as a by-product of the reaction. However, no structural information is available for these cyclic oligomers so far. In this publication, we present the analytical determination of PES cyclic oligomers. Their presence in extracts of PES membrane filters is confirmed. The structure of the PES cyclic trimer is elucidated by X-ray and NMR investigation, obtained as crystals from the sublimation of the PES raw material. A strategy is shown to assess the toxicity of such cyclic oligomers and to derive a permitted daily exposure (PDE). The data will reduce the levels of unknowns in extractables and leachables screenings and supports the risk assessment of PES sterile filters.



https://doi.org/10.1002/pen.26064
Ehrhardt, Linda; Günther, Mike; Böhme, Manfred; Köhler, Michael; Cao-Riehmer, Jialan
Three soil bacterial communities from an archaeological excavation site of an ancient coal mine near Bennstedt (Germany) characterized by 16S r-RNA sequencing. - In: Environments, ISSN 2076-3298, Bd. 9 (2022), 9, 115, S. 1-19

This metagenomics investigation of three closely adjacent sampling sites from an archaeological excavation of a pre-industrial coal mining exploration shaft provides detailed information on the composition of the local soil bacterial communities. The observed significant differences between the samples, reflected in the 16S r-RNA analyses, were consistent with the archaeologically observed situation distinguishing the coal seam, the rapidly deposited bright sediment inside an exploration shaft, and the topsoil sediment. In general, the soils were characterized by a dominance of Proteobacteria, Actinobacteria, Acidobacteria, and Archaea, whereas the coal seam was characterized by the highest proportion of Proteobacteria; the topsoil was characterized by very high proportions of Archaea - in particular, Nitrosotaleaceae - and Acidobacteria, mainly of Subgroup 2. Interestingly, the samples of the fast-deposited bright sediment showed a rank function of OTU abundances with disproportional values in the lower abundance range. This could be interpreted as a reflection of the rapid redeposition of soil material during the refilling of the exploration shaft in the composition of the soil bacterial community. This interpretation is supported by the observation of a comparatively high proportion of reads relating to bacteria known to be alkaliphilic in this soil material. In summary, these investigations confirm that metagenomic analyses of soil material from archaeological excavations can provide valuable information about the local soil bacterial communities and the historical human impacts on them.



https://doi.org/10.3390/environments9090115
Radivoievych, Alexandar; Kolp, Benjamin; Grebinyk, Sergii; Prylutska, Svitlana; Ritter, Uwe; Zolk, Oliver; Glökler, Jörn Felix; Frohme, Marcus; Grebinyk, Anna
Prestine C60 fullerene as a novel agent in sonodynamic treatment of cancer cells. - In: FEBS Open Bio, ISSN 2211-5463, Bd. 12 (2022), S. 74

https://doi.org/10.1002/2211-5463.13440
Mazétyté-Stasinskiené, Raminta; Freiberger, Emma; Täuscher, Eric; Köhler, Michael
Four-level structural hierarchy: microfluidically supported synthesis of polymer particle architectures incorporating fluorescence-labeled components and metal nanoparticles. - In: Langmuir, ISSN 1520-5827, Bd. 38 (2022), 29, S. 8794-8804

Hierarchical assemblies of functional polymer particles are promising due to their surface as well as physicochemical properties. However, hierarchical composites are complex and challenging to form due to the many steps necessary for integrating different components into one system. Highly structured four-level composite particles were formed in a four-step process. First of all, gold (Au) nanoparticles, poly(methyl methacrylate) (PMMA) nanoparticles, and poly(tripropylene glycol diacrylate) (poly-TPGDA) microparticles were individually synthesized. By applying microfluidic techniques, polymer nano- and microparticles were formed with tunable size and surface properties. Afterwards, the negatively charged gold nanoparticles and PMMA particles functionalized with a positively charged surface were mixed to form Au/PMMA assemblies. The Au/PMMA composites were mixed and incubated with poly-TPGDA microparticles to form ternary Au/PMMA/poly-TPGDA assemblies. For the formation of composite-containing microparticles, Au/PMMA/poly-TPGDA composites were dispersed in an aqueous acrylamide-methylenebisacrylamide solution. Monomer droplets were formed in a co-flow microfluidic device and photopolymerized by UV light. In this way, hierarchically structured four-level composites consisting of four different size ranges - 0.025/0.8/30/1000 μm - were obtained. By functionalizing polymer nano- and microparticles with different fluorescent dyes, it was possible to visualize the same composite particle under two different excitation modes (λex = 395-440 and λex = 510-560 nm). The Au/PMMA/poly-TPGDA composite-embedded polyacrylamide microparticles can be potentially used as a model for the creation of composite particles for sensing, catalysis, multilabeling, and biomedical applications.



https://doi.org/10.1021/acs.langmuir.2c00686
Konkin, Alexander; Ritter, Uwe; Konkin, Aleksei A.; Knauer, Andrea; Krinichnyi, Victor I.; Klochkov, Vladimir; Aganov, Albert; Gafurov, Marat; Wendler, Frank; Scharff, Peter
PPDN and NTCDA radical anions formation in EMIM-DCA, BMIM-BF4 EMIM-Ac ionic liquid solutions under the steady state UV and Vis light illumination: a combined X-, K-band EPR and DFT study. - In: Journal of molecular liquids, ISSN 1873-3166, Bd. 362 (2022), 119631

The radical anion of Pyrazino[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile (PPDN) in blends with imidazolium based room temperature ionic liquids (RTIL): EMIM-DCA, BMIM-BF4, EMIM-Ac has been detected by X-band continues wave (CW) electron paramagnetic resonance (EPR) under steady state Xe-lamp illumination in the temperature interval from 190 to 340 K. The radical anion of 1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTCDA) was registered by X- and K-band CW EPR at room temperature under the visible light CW diode laser operated at 532 nm, and Xe-lamp as well. The experimental hyperfine coupling data of both anion radicals were confirmed by DFT calculation. The formation of PPDN•- NTCDA•- and fullerene derivative (FD) radical anions is attributed to the photoelectron transfer from an IL anion to PPDN, NTCDA and FD electron acceptors. Here, the electron transfer leads to an irreversibility of these reactions due to photo-induced decomposition of the IL anions in the presence of an effective electron acceptor and is supported in the above RTILs solutions by means of EPR. For the indirect confirmation of the EMIM-DCA, EMIM-AC, BMIM-BF4 anion degradation in solutions with PPDN and NTCDA up to the transient radical state, similar data of acetate anion [OCOCH3]- decomposition, under CW Xe-Lamp photolysis resulting in •CH3 formation and its stabilization at 77 K in EMIM-Ac suspension with some FD dissolved in DCB are introduced as well. However, the main goal of this study is dedicated to the features of rotational and translational diffusion kinetics of PPDN and NTCDA radical anions in IL solutions as well to the evaluation of their application as a spin probes in ILs study in liquid phase.



https://doi.org/10.1016/j.molliq.2022.119631
Henkel, Thomas; Mayer, Günter; Hampl, Jörg; Cao-Riehmer, Jialan; Ehrhardt, Linda; Schober, Andreas; Groß, Gregor Alexander
From microtiter plates to droplets - there and back again. - In: Micromachines, ISSN 2072-666X, Bd. 13 (2022), 7, 1022, S. 1-13

Droplet-based microfluidic screening techniques can benefit from interfacing established microtiter plate-based screening and sample management workflows. Interfacing tools are required both for loading preconfigured microtiter-plate (MTP)-based sample collections into droplets and for dispensing the used droplets samples back into MTPs for subsequent storage or further processing. Here, we present a collection of Digital Microfluidic Pipetting Tips (DMPTs) with integrated facilities for droplet generation and manipulation together with a robotic system for its operation. This combination serves as a bidirectional sampling interface for sample transfer from wells into droplets (w2d) and vice versa droplets into wells (d2w). The DMPT were designed to fit into 96-deep-well MTPs and prepared from glass by means of microsystems technology. The aspirated samples are converted into the channel-confined droplets’ sequences separated by an immiscible carrier medium. To comply with the demands of dose-response assays, up to three additional assay compound solutions can be added to the sample droplets. To enable different procedural assay protocols, four different DMPT variants were made. In this way, droplet series with gradually changing composition can be generated for, e.g., 2D screening purposes. The developed DMPT and their common fluidic connector are described here. To handle the opposite transfer d2w, a robotic transfer system was set up and is described briefly.



https://doi.org/10.3390/mi13071022