Monographien

Anzahl der Treffer: 31
Erstellt: Wed, 27 Mar 2024 23:22:57 +0100 in 0.0635 sec


Thete, Aniket;
Chemochips : development and application of analytical micro spot arrays, 2009. - Online-Ressource (PDF-Datei: 113 Bl., 194, 58 MB) : Ilmenau, Techn. Univ., Diss., 2009
Parallel als Druckausg. erschienen

Die im Vergleich zu DNA-Chips weniger entwickelte Proteinchiptechnologie zeigt das Problem einer nicht vorhandenen universellen Erkennungsfunktion oder Strategie für universell einsetzbare Chips für die Vielzahl von Proteinproben. Der Grund dafür ist die chemische Komplexität, die Proteine als Translationsprodukt eines Basisgens (DNA) tragen. Es existiert hierbei der grundsätzliche Widerspruch zwischen einer chemischen Spezifität der Erkennung und einer universellen Einsatzmöglichkeit solch einer Mikroarray-basierten Erkennung, die mit der höheren chemischen Komplexität umgehen muß. Die Kernfrage ist dabei, können unterschiedliche Analyse- und Auslesemethoden in einer Plattform kombiniert werden, indem eine Integration spezifischer und weniger spezifischer analytischer Erkennungsmethoden erfolgt. Die Adressierung des Problems zur universellen Anwendung von Chips für die spezifische Analyterkennung erfolgte bei dieser Integration. Das Hauptziel der vorliegenden Arbeit war die Integration verschiedenster Charakterisierungs- und Auslesemethoden zu einer Chiptechnologie für die chemische Erkennung von Flüssigkeiten. Um multifunktionale Chemochips zu entwickeln, wurden moderne Analysen- und Auslesetechniken wie berührungsfreies Mikrospotting, digitale Fluoreszenzaufnahmen und AFM-Techniken verwendet. Die Mikrospot-Technik wurde zur Erzeugung vom Mikroarrays, die reine Indikatoren und Indikatormischungen als Funktionselement enthielten, sowie zur örtlich begrenzten chemischen Matrixmodifikation genutzt. Ein Fluoreszenz-Imagingverfahren mittels schneller CCD-Kamera ermöglichte die Echtzeitaufnahme einer Bildserie der Analyt-Indikator-Wechselwirkung bei mehreren Anregungs- und Emissionswellenlängen. Für eine bessere Analytklassifikation wurde eine multivariate Datenanalyse auf den erhaltenen Datenpool, der sich aus Fluoreszenzintensitätsänderungen der Spots mittels Bildanalyse ergab, angewandt. Neben diesen etablierten Auswertemethoden kam eine speziell entwickelte hochauflösende Nanopositionier- und Nanomeßmaschine mit eingebautem AFM-Modus (SPM-NPMM) zum Einsatz, um die Mikrospotarrays auf einer Strecke von einigen Millimetern mit der Auflösung und der Präzision eines AFMs zu untersuchen.Die SPM-NPMM besitzt einen großen dynamischen Meßbereich von 25 × 25 × 5 mm3 mit einer lateralen Auflösung von 0.1 nm. Messungen mit der SPM-NPMM zeigten, daß die Verdampfung des Lösemittels nach dem Spotting zu der Ausbildung eines konzentrischen Doppelkranzes innerhalb der Mikrospots führt. Dieses charakteristische Doppelkranz-Merkmal der Mikrospots konnte nur bei Verwendung binärer Lösemittelmischungen mit unterschiedlichen Polaritäten der Komponenten, wie bei Wasser und DMF, gefunden werden. Die Ursache dafür ist der unterschiedliche Transport des gelösten Materials in zwei verschiedenen Lösemitteln während der Ausbildung der Spots.Hochaufgelöste SPM-NPMM-Messungen zeigten, daß die inhomogene Verteilung von Farbstoff-Nanokristallen, deren Höhe 2 5 nm betrug, auf den inneren Kranz eines Doppelkranz-Spots begrenzt war. Ursächlich ist die verminderte Löslichkeit des Farbstoffes in DMF.Die qualitative und quantitative Differenzierung von binären Lösemittelmischungen wurde durch die Verwendungen eines einlagigen Chemochips mit pH- und polaritätsempfindlichen Farbstoffen möglich. Mittels Mikroarray-Muster konnten die Analyten mit einem vergleichbaren Alkoholgehalt von 5 Vol.-%, wie in einer Wasser-Ethanol-Mischung, verschiedenen Bieren oder anderen alkoholischen Getränken, qualitativ von einander unterschieden werden. Die Variation im Muster der Fluoreszenzspots agierte als Fingerprint komplex zusammengesetzter Flüssigkeiten wie Mischungen und Getränke. Die multivariate Datenanalyse des erhaltenen Datenpools aus den Chemochip-Experimenten ermöglichte die Unterscheidung bestimmter Klassen binärer Gemische. Ebenso lassen sich einige andere Mikroarray-Komponenten,wie Spots binärer Farbstoffgemische, auf ihr Antwortverhalten bezüglich einer Vielzahl von flüssigen Analyten durch Verwendung der PCA-Analyse klassifizieren. Analytische Doppellagen-Chemochips wurden durch die Aufteilung der Funktionen Differenzierung in der oberen Schicht und Indikation in der unteren Schicht desselben Chips hergestellt. Die Realisierung erfolgte durch Stapelung von Hydrogel-Polymerlagen mit Matrixmodifizierern durch Einsatz der Lösemittel-Guß-Methode. Die mobilitätsabhängige Differenzierung der oberen Schicht wurde durch physikalische Umwandlung der Polymermatrix durch quervernetzende Stoffe erreicht. Die Indikatorfunktion der unteren Schicht konnte durch eingelagerte fluoreszierende Farbstoffe realisiert werden. Es war damit möglich, verschiedene Analyten durch die Diffusionszeit während des Durchtritts durch die Differenzierungsschicht mittels Echtzeitaufnahme von Bildserien und deren Auswertung zu unterscheiden. Die Moleküle der Analyten zeigten Variationen in den Übertrittszeiten ihres Transports durch die obere Schicht in Abhängigkeit des Vernetzungsgrades der Polymermatrix. Dieser Transport von Einzel- und Mischungsanalyten durch die Differenzierungsschicht konnte auch detektiert werden, wenn das Fluoreszenzschema der Singlelayer-Chips verwendet wurde. Der Doppellagen-Chemochip zeigte auch das Analyt-Separationssignal für eine Mischung zweier verschiedener Analytmoleküle währender derer Diffusion durch die Differenzierungsschicht. Dieses Verhalten kann den bevorzugten Wechselwirkungen zwischen Analyt und der modifizierten Polymerumgebung als Transportmedium zugeordnet werden.Die offene Problemstellung von Spezifität gegenüber Universalität, belegt durch weniger entwickelte Biochips wie den Proteinchips, wurde in der vorgelegten Arbeit durch Verwendung verschiedenen Typen von Chemochips adressiert. Es konnte gezeigt werden, daß mittels Einzel- und Doppellagenchips mit fluoreszierenden Mikroarrays verschiedene bevorzugte und allgemeine Charakterisierungen möglich sind.



http://www.db-thueringen.de/servlets/DocumentServlet?id=13701
Metze, Josef; Köhler, Michael
4. Workshop "Chemische und biologische Mikrolabortechnik" : 26. - 28. Februar 2008, Ilmenau/Elgersburg (Thüringen). - [Ilmenau], 2008. - [90] Bl.Literaturangaben

Wagner, Jörg;
Goldnanopartikel : mikroreaktionstechnische Synthese und Schadstofftransportwirkung, 2007. - Online-Ressource (PDF-Datei: 220 S., 10,4 MB) : Ilmenau, Techn. Univ., Diss., 2007
Parallel als Druckausg. erschienen

Das Ziel dieser Arbeit bestand in der Überprüfung der Eignung von Mikroreaktoren für die Handhabung, Generierung und Untersuchung von nanopartikulären Stoffsystemen. Dabei sollte die zu entwickelnde Laboranordnung im Hinblick auf die Eignung zur Anwendung in einer Prozeßkette, welche über Partikelsynthese, Modifizierung bis zur Analyse und Untersuchung der Bindung von Schadstoffen an die Nanopartikel reicht, charakterisiert werden. Als Modell für ein nanopartikuläres Stoffsystem wurden Goldnanopartikel (GNP) ausgewählt, da sie sehr interessante Eigenschaften zeigen, die sie im Rahmen der Nanotechnologie für die Entwicklung neuer Funktionsmaterialen prädestinieren. Die potentiellen Wechselwirkungen von GNP mit verschiedenen Schadstoffmodell-Substanzen wurden mit Hilfe konventionell synthetisierter Oberflächen-modifizierter GNP untersucht. Dabei wurde deutlich, daß der notwendige Isolationsschritt, sowie die Inkubation in keinem zur Verfügung stehendem Mikrosystem realisierbar waren. Es konnte gezeigt werden, daß die Schwermetallionen Blei und Kupfer, sowie der kationische Farbstoff Malachitgrün sehr effizient durch GNP adsorbiert werden, während die Wechselwirkung mit 4-Chlorphenol, Amidoschwarz B und Naphthalin gering ist. Eine direkte Synthese von GNP aus einem Goldsalz und Ascorbinsäure als Reduktionsmittel in einem Split-and-Recombine-Mikromischer konnte realisiert werden es wurde damit gezeigt, daß eine solche direkte kontinuierliche Synthese in einem Mikroreaktor möglich ist. Experimentelle Parameter wurden optimiert, um schmale Größenverteilungen der Partikel zu erzeugen. Dabei hat sich die Einstellung der Oberflächeneigenschaften der Mikroreaktorkanäle und der physikochemischen Eigenschaften der Nanopartikel als entscheidend herausgestellt, um eine Ablagerung der Partikel, die zur Reaktorverstopfung führt, zu verhindern. Zwei Ansätze, namentlich die Hydrophobisierung der Kanaloberflächen durch Silanisierung und die elektrostatische Abstoßung zwischen Nanopartikeln und Kanaloberflächen durch Erhöhung des pH-Wertes. Weiterhin konnte in einem modularen Mikrosystem konnten unter Verwendung von Natriumborhydrid als Reduktionsmittel, Silber- und Goldnanopartikel hergestellt werden. Zusätzlich gelang die Umsetzung dieser Partikel mit Liganden direkt im Mikrosystem, was zu einer direkten Synthese von modifizierten Gold- und Silbernanopartikel in einem kontinuierlichen Prozeß führte. Insgesamt konnte gezeigt werden, daß nanopartikuläre Systeme gut in Mikrosystemen gehandhabt, dargestellt sowie spektral analysiert werden können. Ebenso war es möglich, Partikelwachstum, Oberflächenbindung von Liganden und Aggregation im Mikrodurchflußsystem zu untersuchen.



http://www.db-thueringen.de/servlets/DocumentServlet?id=9587
Koehler, Michael; Köhler, MichaelFritzsche, Wolfgang;
Nanotechnology : an introduction to nanostructuring techniques
2., completely rev. ed.. - Weinheim : Wiley-VCH, 2007. - XII, 321 S. ISBN 3-527-31871-2
Literaturverz. S. 283 - 305

Köhler, Michael; Thete, Aniket; Groß, Gregor Alexander
ChemoChips : Abschlussbericht ; Berichtszeitraum: 2003 - 2006. - Ilmenau : TU. - Online-Ressource (78 S., 6,05 MB)Förderkennzeichen BMWi 16IN0219. - Verbund-Nr. 01024368

https://edocs.tib.eu/files/e01fb10/624400719.pdf
Köhler, Michael
Abstracts. - Ilmenau, 2006. - [59] Bl.Literaturangaben

Köhler, Michael
Abstracts. - Ilmenau, 2004. - [52] Bl.
Köhler, Michael; Fritzsche, Wolfgang
Nanotechnology : an introduction to nanostructuring techniques
1. ed. - Weinheim : Wiley-VCH, 2004. - IX, 272 S ISBN 3-527-30750-8