Publikationen von Prof. Dr. Stefan Krischok

   
Anzahl der Treffer: 257
Erstellt: Thu, 28 Mar 2024 23:14:09 +0100 in 0.0768 sec


Hähnlein, Bernd; Sagar, Neha; Honig, Hauke; Krischok, Stefan; Tonisch, Katja
Anisotropy of the ΔE effect in Ni-based magnetoelectric cantilevers: a finite element method analysis. - In: Sensors, ISSN 1424-8220, Bd. 22 (2022), 13, 4958, S. 1-16

In recent investigations of magnetoelectric sensors based on microelectromechanical cantilevers made of TiN/AlN/Ni, a complex eigenfrequency behavior arising from the anisotropic ΔE effect was demonstrated. Within this work, a FEM simulation model based on this material system is presented to allow an investigation of the vibrational properties of cantilever-based sensors derived from magnetocrystalline anisotropy while avoiding other anisotropic contributions. Using the magnetocrystalline ΔE effect, a magnetic hardening of Nickel is demonstrated for the (110) as well as the (111) orientation. The sensitivity is extracted from the field-dependent eigenfrequency curves. It is found, that the transitions of the individual magnetic domain states in the magnetization process are the dominant influencing factor on the sensitivity for all crystal orientations. It is shown, that Nickel layers in the sensor aligned along the medium or hard axis yield a higher sensitivity than layers along the easy axis. The peak sensitivity was determined to 41.3 T−1 for (110) in-plane-oriented Nickel at a magnetic bias flux of 1.78 mT. The results achieved by FEM simulations are compared to the results calculated by the Euler-Bernoulli theory.



https://doi.org/10.3390/s22134958
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Reversible sodiation of electrochemically deposited binder- and conducting additive-free Si-O-C composite layers. - In: Energy technology, ISSN 2194-4296, Bd. 10 (2022), 5, 2101164, S. 1-9

Binder- and conducting additive-free Si-O-C composite layers are deposited electrochemically under potentiostatic conditions from sulfolane-based organic electrolyte. Quartz crystal microbalance with damping monitoring is used for evaluation of the layer growth and its physical properties. The sodiation-desodiation performance of the material is afterward explored in Na-ion electrolyte. In terms of specific capacity, rate capability, and long-term electrochemical stability, the experiments confirm the advantages of applying the electrochemically formed Si-O-C structure as anode for Na-ion batteries. The material displays high (722 mAh g^-1) initial reversible capacity at j = 70 mA g^-1 and preserves stable long-term capacity of 540 mAh g^-1 for at least 400 galvanostatic cycles, measured at j = 150 mA g^-1. The observed high performance can be attributed to its improved mechanical stability and accelerated Na-ion transport in the porous anode structure. The origin of the material electroactivity is revealed based on X-Ray photoelectron spectroscopic analysis of pristine (as deposited), sodiated, and desodiated Si-O-C layers. The evaluation of the spectroscopic data indicates reversible activity of the material due to the complex contribution of carbon and silicon redox centers.



https://doi.org/10.1002/ente.202101164
Reiß, Stephanie; Hopfeld, Marcus; Romanus, Henry; Pfeifer, Kerstin; Krischok, Stefan; Rädlein, Edda
Chemical changes of float glass surfaces induced by different sand particles and mineralogical phases. - In: Journal of non-crystalline solids, ISSN 0022-3093, Bd. 566 (2021), 120868

Particles play an important role in the storage, transportation and natural weathering of glasses, but their influence on glass degradation is little studied. In this work, the influence of main sand components is investigated. Feldspar exhibits the strongest leaching rate for the network former Na, while quartz has the lowest. The leaching rate of natural sands is in between. Based on these findings, a model describing the leaching mechanism was developed: Hereby, hydroxyl groups adhering on sand grains adsorb network modifiers by substituting their hydrogen by network formers from the glass surface. The amount of available hydroxyl groups determines the leaching rate. This model is supported by loss on ignition performed for the sands, which might be a suitable method to roughly estimate their leaching rates. The adsorption of network modifiers suppresses carbonate formation, dendritic growth and Mg diffusion in the glass surface region. Pimple-like crystal growth is observed.



https://doi.org/10.1016/j.jnoncrysol.2021.120868
Link, Steffen; Kurniawan, Mario; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas; Ivanov, Svetlozar
Enhanced cycling performance of binder free silicon-based anode by application of electrochemically formed microporous substrate. - In: Electrochimica acta, ISSN 1873-3859, Bd. 380 (2021), 138216, S. 1-9

In this work, an electrochemically formed porous Cu current collector (p-Cu) is utilized for the development of a high-performance binder-free silicon anode. Two electrolyte compositions based on sulfolane (SL) and [BMP][TFSI] ionic liquid (IL) are implemented for silicon deposition. The electrochemical experiments confirm the advantages of applying the p-Cu structure in terms of specific capacity, rate capability, and long-term cycling, where the best electrochemical properties have been observed for the Si deposited from SL electrolyte. The Si-based p-Cu anodes formed in SL display stable 2500 mAh g^-1 reversible capacity during the first 250 cycles and promising capacity retention. Compared to this result, the cycling performance of the same type of material deposited on flat Cu foil (f-Cu) showed significantly reduced capacity (1400 mAh g^-1) and inferior cycling performance. The positive effect can be attributed to the improved mechanical stability of the active material and accelerated ionic transport in the porous structure of the anode. The improved functional properties of the electrochemically deposited Si from SL electrolyte in p-Cu samples compared to those obtained in IL can be ascribed to differences in the chemical composition. While the layers deposited in SL electrolyte involve Si domains incorporated in a matrix containing C and O that offer high mechanical stability, the Si material obtained in IL is additionally influenced by N and F chemical species, resulting from active IL decomposition. These differences in the chemical surrounding of the Si domains are the primary reason for the inferior electrochemical performance of the material deposited from [BMP][TFSI] electrolyte. XPS analysis shows that the initial composition of the as deposited layers, containing a considerable amount of elemental Si, is changed after lithiation and that the electrochemical activity of the anode is governed by switching between the intermediate redox states of Si, where the carbon-oxygen matrix is also involved.



https://doi.org/10.1016/j.electacta.2021.138216
Ivanov, Svetlozar; Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas
Electrochemical nucleation of silicon in ionic liquid-based electrolytes. - In: Meeting abstracts, ISSN 2151-2043, Bd. MA2020-01 (2020), 19, 1181

https://doi.org/10.1149/MA2020-01191181mtgabs
Kleinschmidt, Peter; Mutombo, Pingo; Berthold, Theresa; Paszuk, Agnieszka; Steidl, Matthias; Ecke, Gernot; Nägelein, Andreas; Koppka, Christian; Supplie, Oliver; Krischok, Stefan; Romanyuk, Oleksandr; Himmerlich, Marcel; Hannappel, Thomas
Atomic surface structure of MOVPE-prepared GaP(111)B. - In: Applied surface science, Bd. 534 (2020), 147346

Controlling the surface formation of the group-V face of (111)-oriented III-V semiconductors is crucial for subsequent successful growth of III-V nanowires for electronic and optoelectronic applications. With a view to preparing GaP/Si(111) virtual substrates, we investigate the atomic structure of the MOVPE (metalorganic vapor phase epitaxy)-prepared GaP(111)B surface (phosphorus face). We find that upon high-temperature annealing in the H2-based MOVPE process ambience, the surface is phosphorus-depleted, as evidenced by X-ray photoemission spectroscopy (XPS). However, a combination of density functional theory calculations and scanning tunneling microscopy (STM) suggests the formation of a partially H-terminated phosphorus surface, where the STM contrast is due to electrons tunneling from non-terminated dangling bonds of the phosphorus face. Atomic force microscopy (AFM) reveals that a high proportion of the surface is covered by islands, which are confirmed as Ga-rich by Auger electron spectroscopy (AES). We conclude that the STM images of the samples after high-temperature annealing only reflect the flat regions of the partially H-terminated phosphorus face, whereas an increasing coverage with Ga-rich islands, as detected by AFM and AES, forms upon annealing and underlies the higher proportion of Ga in the XPS measurements.



https://doi.org/10.1016/j.apsusc.2020.147346
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas; Ivanov, Svetlozar
Electrogravimetry and structural properties of thin silicon layers deposited in sulfolane and ionic liquid electrolytes. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 12 (2020), 51, S. 57526-57538

Potentiostatic deposition of silicon is performed in sulfolane (SL) and ionic liquid (IL) electrolytes. Electrochemical quartz crystal microbalance with damping monitoring (EQCM-D) is used as main analytical tool for the characterization of the reduction process. The apparent molar mass (Mapp) is applied for in situ estimation of the layer contamination. By means of this approach, appropriate electrolyte composition and substrate type are selected to optimize the structural properties of the layers. The application of SL electrolyte results in silicon deposition with higher efficiency compared to the IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][TFSI]. This has been associated with the instability of the IL in the presence of silicon tetrachloride and the enhanced incorporation of IL decomposition products into the growing silicon deposit. X-ray photoelectron spectroscopy (XPS) analysis supports the results about the layer composition, as suggested from the microgravimetric experiments. Attention has been given to the impact of practically relevant substrates (i.e., Cu, Ni, and vitreous carbon) on the reduction process. An effective deposition can be carried out on the metal electrodes in both electrolytes due to accelerated reaction kinetics for these types of substrates. However, on vitreous carbon (VC), a successful reduction of SiCl4 can only be accomplished in the IL, while the electroreduction process in SL is dominated by the decomposition of the electrolyte. For short deposition times, the scanning electron microscopy (SEM) images display rough morphologies in the nanometer range, which evolve further to structures with increased length scale of the surface roughness. The development of a rough interface during deposition, resulting in QCM damping at advanced stages of the process, is interpreted by a model accounting for the resistive force caused by the interaction of the liquid with a nonuniform layer interface. By using this approach, the individual contributions of the surface roughness and viscoelastic effects to the measured damping values are estimated.



https://doi.org/10.1021/acsami.0c14694
Hähnlein, Bernd; Hofmann, Tim; Tonisch, Katja; Pezoldt, Jörg; Kovac, Jaroslav; Krischok, Stefan
Structural analysis of sputtered Sc(x)Al(1-x)N layers for sensor applications. - In: Materials science and smart materials, (2020), S. 13-18

Kürth, Sascha; Schmidt-Grund, Rüdiger; Krischok, Stefan; Tonisch, Katja
Structure and dielectric function tensor of (Al,Sc)N thin films. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 30.29

Beenken, Wichard J. D.; Gäbler, Tobias B.; Runge, Erich; Krischok, Stefan
Improved numerical reconstruction method for Metastable Induced Electron Spectra of molecules. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 48.6