Veröffentlichungslisten der Fachgebiete finden Sie auf deren Seiten.

Anzahl der Treffer: 2298
Erstellt: Fri, 19 Apr 2024 23:11:29 +0200 in 0.0680 sec


Ren, Jie; Ran, Yan; Yang, Zhi Chao; Zhao, Huaping; Wang, Yude; Lei, Yong
Boosting material utilization via direct growth of Zn2(V3O8)2 on the carbon cloth as a cathode to achieve a high-capacity aqueous zinc-ion battery. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 46, 2303307, S. 1-10

Aqueous zinc-ion batteries (AZIBs) have attracted the attention of researchers because of their high theoretical capacity and safety. Among the many vanadium-based AZIB cathode materials, zinc vanadate is of great interest as a typical phase in the dis-/charge process. Here, a remarkable method to improve the utilization rate of zinc vanadate cathode materials is reported. In situ growth of Zn2(V3O8)2 on carbon cloth (CC) as the cathode material (ZVOCC) of AZIBs. Compared with the Zn2(V3O8)2 cathode material bonded on titanium foil (ZVO@Ti), the specific capacity increases from 300 to 420 mAh g−1, and the utilization rate of the material increases from 69.60% to 99.2%. After the flexible device is prepared, it shows the appropriate specific capacity (268.4 mAh g−1 at 0.1 A g−1) and high safety. The method proposed in this work improves the material utilization rate and enhances the energy density of AZIB and also has a certain reference for the other electrochemical energy storage devices.



https://doi.org/10.1002/smll.202303307
Peh, Katharina; Flötotto, Aaron; Lauer, Kevin; Schulze, Dirk; Bratek, Dominik; Krischok, Stefan
Calibration of low-temperature photoluminescence of boron-doped silicon with increased temperature precision. - In: Physica status solidi, ISSN 1521-3951, Bd. 260 (2023), 10, 2300300, S. 1-5

https://doi.org/10.1002/pssb.202300300
Mathew, Sobin; Abedin, Saadman; Kurtash, Vladislav; Lebedev, Sergei P.; Lebedev, Alexander A.; Hähnlein, Bernd; Stauffenberg, Jaqueline; Jacobs, Heiko O.; Pezoldt, Jörg
Evaluation of hysteresis response in achiral edges of graphene nanoribbons on semi-insulating SiC. - In: Materials science forum, ISSN 1662-9752, Bd. 1089 (2023), S. 15-22

Hysteresis response of epitaxially grown graphene nanoribbons devices on semi-insulating 4H-SiC in the armchair and zigzag directions is evaluated and studied. The influence of the orientation of fabrication and dimensions of graphene nanoribbons on the hysteresis effect reveals the metallic and semiconducting nature graphene nanoribbons. The hysteresis response of armchair based graphene nanoribbon side gate and top gated devices implies the influence of gate field electric strength and the contribution of surface traps, adsorbents, and initial defects on graphene as the primary sources of hysteresis. Additionally, passivation with AlOx and top gate modulation decreased the hysteresis and improved the current-voltage characteristics.



https://doi.org/10.4028/p-i2s1cm
Chao, Xin; Yan, Chengzhan; Zhao, Huaping; Wang, Zhijie; Lei, Yong
Micro-nano structural electrode architecture for high power energy storage. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 44 (2023), 5, 050201, S. 1-6

https://doi.org/10.1088/1674-4926/44/5/050201
Gravelle, Simon; Haber-Pohlmeier, Sabina; Mattea, Carlos; Stapf, Siegfried; Holm, Christian; Schlaich, Alexander
NMR investigation of water in salt crusts: insights from experiments and molecular simulations. - In: Langmuir, ISSN 1520-5827, Bd. 39 (2023), 22, S. 7548-7556

The evaporation of water from bare soil is often accompanied by the formation of a layer of crystallized salt, a process that must be understood in order to address the issue of soil salinization. Here, we use nuclear magnetic relaxation dispersion measurements to better understand the dynamic properties of water within two types of salt crusts: sodium chloride (NaCl) and sodium sulfate (Na2SO4). Our experimental results display a stronger dispersion of the relaxation time T1 with frequency for the case of sodium sulfate as compared to sodium chloride salt crusts. To gain insight into these results, we perform molecular dynamics simulations of salt solutions confined within slit nanopores made of either NaCl or Na2SO4. We find a strong dependence of the value of the relaxation time T1 on pore size and salt concentration. Our simulations reveal the complex interplay between the adsorption of ions at the solid surface, the structure of water near the interface, and the dispersion of T1 at low frequency, which we attribute to adsorption-desorption events.



https://doi.org/10.1021/acs.langmuir.3c00036
Hu, Ping; Dong, Yulian; Yang, Guowei; Chao, Xin; He, Shijiang; Zhao, Huaping; Fu, Qun; Lei, Yong
Hollow CuSbSy coated by nitrogen-doped carbon as anode electrode for high-performance potassium-ion storage. - In: Batteries, ISSN 2313-0105, Bd. 9 (2023), 5, 238, S. 1-15

As a potential anode material for potassium-ion batteries (PIBs), bimetallic sulfides are favored by researchers for their high specific capacity, low cost, and long cycle life. However, the non-ideal diffusion rate and poor cycle stability pose significant challenges in practical applications. In this work, bimetallic sulfide CuSbSyC with a yolk-shell structure was synthesized by in situ precipitation and carbonization. When CuSbSy is applied in the anode of PIBs, it can provide the desired capacity and reduce the volume expansion of the compound through the synergistic effect between copper and antimony. At the same time, the existence of the nitrogen-doped carbon shell confines the material within the shell while improving its electrical conductivity, inhibiting its volume expansion and aggregation. Therefore, CuSbSy@C exhibits a satisfactory capacity (438.8 mAh g^-1 at 100 mA g^-1 after 60 cycles) and an excellent long cycle life (174.5 mAh g^-1 at 1000 mA g^-1 after 1000 cycles).



https://doi.org/10.3390/batteries9050238
Hu, Yongxu; Wang, Zhongwu; Huang, Yinan; Shi, Rui; Wang, Shuguang; Chen, Xiaosong; Bi, Jinshun; Xuan, Yundong; Lei, Yong; Li, Liqiang; Yang, Chuluo; Hu, Wenping
Deep ultraviolet phototransistor based on thiophene-fluorobenzene oligomer with high mobility and performance. - In: Chinese journal of chemistry, ISSN 1614-7065, Bd. 41 (2023), 13, S. 1539-1544

Deep ultraviolet (UV) photodetectors have important applications in the industrial and military fields. However, little research has been reported on organic phototransistors (OPTs) in the deep ultraviolet range. Here, a novel organic semiconductor containing a small torsion angle and low π-conjugation 2,2':5',2”-terthiophene groups, oF-PTTTP, is designed and synthesized, which exhibits high carrier mobility and unique deep ultraviolet response. Accordingly, an OPT based on oF-PTTTP single crystal shows high responsivity to deep-UV light. The photodetectors achieve high photoresponsivity (R) of 857 A/W and detectivity (D*) of 3.2×10^15 Jones under 280 nm light illumination (only 95 nW&hahog;cm^-2). To the best of our knowledge, 280 nm is the deepest detection wavelength reported for organic phototransistors and this work presents a new molecule design concept for organic phototransistors with deep-UV detection.



https://doi.org/10.1002/cjoc.202200795
Niu, Wenhui; Xu, Bowen; Li, Fupeng; Hou, Minjie; Ren, Kun; Zhang, Da; Lei, Yong; Yang, Bin; Liang, Feng
Hierarchical mesoporous NiO nanosheet arrays as integrated electrode for hybrid sodium-air batteries. - In: Ceramics international, ISSN 1873-3956, Bd. 49 (2023), 13, S. 21355-21362

Attributed to its environmental friendliness, high theoretical energy density, and abundant sodium resource, rechargeable hybrid sodium-air batteries (HSABs) are expected to become a promising pioneer of the new-generation green energy storage device. However, HSABs suffer from the high voltage gap, low energy conversion efficiency, and poor cycle stability due to the low catalytic activity of catalysts caused by the degradation of polymer binders. Herein, hierarchical mesoporous NiO nanosheet arrays grown on carbon papers (CP) (NiO NACP) were synthesized by a facile and efficient hydrothermal route and calcination process, which acts as an integrated electrode for HSABs. Compared with traditional air electrodes that contain a polymer binder and conductive carbon, the integrated NiO NA@CP electrode prevents the aggregation of catalysts, improves the electronic conductivity by good electric contact and ensures its robust mechanical stability. In addition, NiO NA@CP electrode with the abundant porosity and large specific area offers plenty of active sites and shortens ion transfer length and rapid mass transport in ORR/OER process, leading to excellent oxygen catalytic activities. HSABs with NiO NA@CP electrode show a low overpotential of 0.65 V, a state-of-the-art power density (7.53 mW cm^-2), as well as an excellent cyclability of 170 cycles (over 170 h) at a current density of 0.1 mA cm^-2.



https://doi.org/10.1016/j.ceramint.2023.03.264
Zhang, Chenglin; Chandan Solanki, Pankaj; Cao, Dawei; Zhao, Huaping; Lei, Yong
Integration of cointercalation and adsorption enabling superior rate performance of carbon anodes for symmetric sodium-ion capacitors. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 15 (2023), 20, S. 24459-24469

Carbon materials have been the most common anodes for sodium-ion storage. However, it is well-known that most carbon materials cannot obtain a satisfactory rate performance because of the sluggish kinetics of large-sized sodium-ion intercalation in ordered carbon layers. Here, we propose an integration of co-intercalation and adsorption instead of conventional simplex-intercalation and adsorption to promote the rate capability of sodium-ion storage in carbon materials. The experiment was demonstrated by using a typical carbon material, reduced graphite oxide (RGO400) in an ether-solvent electrolyte. The ordered and disordered carbon layers efficiently store solvated sodium ions and simplex sodium ions, which endows RGO400 with enhanced reversible capacity (403 mA h g^-1 at 50 mA g^-1 after 100 cycles) and superior rate performance (166 mA h g^-1 at 20 A g^-1). Furthermore, a symmetric sodium-ion capacitor was demonstrated by employing RGO400 as both the anode and cathode. It exhibits a high energy density of 48 W h g^-1 at a very high power density of 10,896 W kg^-1. This work updates the sodium-ion storage mechanism and provides a rational strategy to realize high rate capability for carbon electrode materials.



https://doi.org/10.1021/acsami.3c02404
Peng, Xuanran; Liu, Jing; Kang, Yaru; Mao, Xu; Yan, Wei; Wang, Xiaohui; Liu, Kong; Xu, Rui; Yang, Fuhua; Li, Zhaofeng
Coupling of photonic and plasmonic modes for double nanowire cavities. - In: Photonics, ISSN 2304-6732, Bd. 10 (2023), 4, 415, S. 1-11

We analyze the coupling between double nanowire cavities for both photonic modes and plasmonic modes. When the spacing between nanowires reduces, a redshift of the resonant frequency of the symmetric mode and a blueshift of the resonant frequency of the antisymmetric mode are observed. Compared to single nanowire cavity modes, the Q factors of antisymmetric supermodes of double nanowires can be improved by 51% for photonic modes and by 24% for plasmonic modes. The mechanisms of Q factor improvement for photonic modes and plasmonic modes are studied based on the field distribution of radiations from the modes. This paper may contribute to research and applications for double nanowire lasers and nanowire laser arrays.



https://doi.org/10.3390/photonics10040415