Studienabschlussarbeiten des FG Elektronische Messtechnik und SignalverarbeitungStudienabschlussarbeiten des FG Elektronische Messtechnik und Signalverarbeitung

Studienabschlussarbeiten

Anzahl der Treffer: 205
Erstellt: Wed, 17 Apr 2024 23:01:44 +0200 in 0.1309 sec


Lienke, Jonas;
Multi-level emulation of mixed-signal design representations in programmable logic. - Ilmenau. - 102 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2019

In dieser Arbeit wird ein neuer Ansatz für Mixed-Signal Verikationsmethoden mittels Emulation von Mixed-Signal Systemen in programmierbarer Logik vorgestellt, der eine energie- und zeiteziente Simulationsumgebung ermöglicht. Dies trägt zu einer neuartigen Lösung für den zeitaufwändigen Prozess der Validierung von integrierten Schaltungen mit Mixed-Signal Eigenschaften auf Systemebene bei. Die unterschiedliche Natur von analoger und digitaler Domäne hindert die direkte Anwendung von DES auf analoge Systeme. Um diese Einschränkung zu umgehen, wendet die in dieser Arbeit vorgeschlagene Simulationsmethode Oversampling im analogen Bereich an, wodurch eine feste Simulationsschrittbreite bereitgestellt und die Modellgenauigkeit verbessert wird. Das analoge Modell wird dann in System-C realisiert und anschließend zusammen mit dem digitalen Teil des Designs mittels HLS synthetisiert. Dies ermöglicht eine in sich geschlossene Simulationsumgebung für Mixed-Signal Datenströme, die deutlich höhere Simulationsgeschwindigkeiten erreicht als vergleichbare Simulationskonzepte. Darüber hinaus trägt das neuartige Verfahren zu einer kohärenten Verikationsmethodik für vollwertige Mixed-Signal Systeme bei. Um die Konsistenz innerhalb der Simulationsmethode zu gewährleisten, wird ein SDF Modell konzipiert und anschließend in der PYNQ Testbench mit Hilfe gebräuchlicher Designmethoden implementiert. Um die Qualität der neuartigen Methode zu bewerten, wird die Leistungsbewertung der PYNQ Testbench mit externen experimentellen Ergebnissen für einen anwendungsbezogenen Testfall verglichen. Basierend auf dieser Bewertung wird eine Schlussfolgerung gezogen, wie sich die vorgestellte Methode im Vergleich zu State of the Art Simulationsmethoden verhält.



Altenburg, Sophie;
A software architecture for reproducible and consistent scientific simulations. - Ilmenau. - 70 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2019

Wissenschaftliche Simulationen müssen konsistent und reproduzierbar sein und müssen, z.B. in Parameterstudien, oft für einen umfangreichen Katalog an Parameterkombinationen durchgeführt werden. Dabei unterliegen sie häufiger Überarbeitung, was sie für Inkonsistenz in Zwischenergebnissen anfällig macht. Trotzdem ist das erneute Berechnen jedes Ergebnisses bei jeder Änderung aus Effizienzgründen keine Lösung. Kern dieser Arbeit ist daher die Konzeptionierung einer Software-Architektur, die sich der konsistenten und reproduzierbaren Ausführung solcher Simulationen widmet. Angelehnt an Flow-Programmierung wird eine Simulation mittels gerichtetem Graph als Workflow dargestellt. Besonderheiten in der Repräsentation der untersuchten Architektur sind "collect"-Schritte, die (Zwischen-)Ergebnisse mehrerer Parametersets zusammenfassen und einzelne Ausführungszweige mit ungünstigen Parameterkombination kontrolliert abzubrechen. Zusätzlich nutzt der Algorithmus Nebenläufigkeiten im Workflow. Das konsistente Speichern der Ergebnisse wird von einem Cache mit Hilfe von Hashing als Konsistenzkontrolle für Zwischenergebnisse übernommen. Ziel der Architektur ist, Simulationen in einzelne, teils parallelisierbare Schritte herunter zu brechen, die leicht änderbar bleiben und gleichzeitig konsistente Ergebnisse zu liefern. Die Bewertung der Architektur erfolgt mit Fokus auf Reproduzierbarkeit und Konsistenz der Ergebnisse, Effizienz steht erst an zweiter Stelle. Dieses Ziel sowie alle in der Arbeit aufgeführten Muss-Kriterien wurde erfüllt.



Pérez Mejía, Eduardo José;
Parametric reconstruction of multi-channel data in ultrasound NDT. - Ilmenau. - 64 Seiten
Technische Universität Ilmenau, Masterarbeit 2019

Der Bereich der zerstörungsfreien Ultraschallprüfung (UNDT) beschäftigt sich mit der Aufgabe, Defekte in Festkörpern zu lokalisieren. Dafür ist eine hochauflösende Bildgebung von größter Bedeutung. Die Forschung zur UNDT befasst sich mit Rekonstruktionsverfahren, Modellen und Datenerfassungsmodalitäten zur Verbesserung der Bildqualität und der Fehlererkennung. Dafür werden große Mengen an Messdaten benötigt. In dieser Arbeit wird ein Compressed-Sensing-Modell für hochwertige Rekonstruktionen vorgestellt, das die Reduzierung der Messzeit und der Speicherkosten von Full-Matrix-Capture-Daten (FMC) ermöglicht. Zunächst wird ein parametrisches Modell für 2D-FMC-Daten eingeführt, das die Tensorstruktur dieser Art von Messung hervorhebt. Dieses wird dann um eine komprimierte Abtastung über Fourier- und räumliches Sub-Sampling erweitert. Das Problem der Schätzung der Position von punktförmigen Reflektoren aus vollständigen und komprimierten FMC-Daten wird mittels Herleitung der Cramer-Rao-Schranke (CRB) für die Standortparameter untersucht und ihr Grenzwertverhalten betrachtet. Dabei wird gezeigt, dass zwei Kanäle ausreichen, um eine endliche Varianz für die Position eines einzelnen Reflektors zu erreichen, und, dass räumliches Sub-Sampling einen Fernfeldgewinn ergibt. Mittels dieser Analyse wird eine Methode für das Design des räumlichen Sub-Samplings, basierend auf der worst-case CRB eines hypothetischen Reflektors, formuliert. Die Rekonstruktion der Defektpositionen wird als ein "Sparse-Signal-Recovery"-Problem betrachtet und mit dem Fast-Iterative-Shrinkage/ Thresholding Algorithmus (FISTA) gelöst. Details für eine matrixfreie Implementierung werden angesprochen. Die Ergebnisse der vorgestellten Rekonstruktionsmethode werden mit der renommierten Total-Focusing-Method (TFM) verglichen. Synthetische und reale Messdaten zeigen, dass der vorgestellte Ansatz auf unkomprimierten Daten zu einer höheren Auflösung als TFM führt. Bei Anwendung auf komprimierte Messdaten übertrifft er TFM weit, da Sub-Sampling-Artefakte reduziert werden. Schließlich wird gezeigt, dass TFM, obwohl es eine niedrigere Auflösung liefert, in einen progressiven Algorithmus überführt werden kann, der die Visualisierung während des Messvorgangs ermöglicht. Der dargestellte Ansatz mit FISTA ist hingegen auf komprimierte Daten anwendbar, die in weniger Messzyklen gesammelt werden können.



Eltohamy, Ali;
Link level simulations and CSI reporting for 5G communication systems. - Ilmenau. - 71 Seiten
Technische Universität Ilmenau, Masterarbeit 2019

Mit der rasanten Entwicklung der neuen Generation von Kommunikationssystemen wird die Entwicklung einer vielseitigen Methode zur Bewertung ihrer Leistung für verschiedene Szenarien und Kanalbedingungen unerlässlich. Um eine solche Bewertung zu ermöglichen, ist das Ziel dieser Masterarbeit die Entwicklung eines flexiblen Link-Level-Simulators auf der Grundlage der neuesten 3GPP Release 15 New Radio (NR) Systemspezifikation, um die Systemleistung in Bezug auf verschiedene Anwendungsfälle, Kanalbedingungen, etc. zu bewerten. Ein weiteres Ziel dieser Masterarbeit ist die Untersuchung der 3GPP Release 15 CSI Reporting Verfahren zur Gewinnung von Kanalzustandsinformationen am Sender in Bezug auf Performance, Komplexität und Feedback Overhead. Ebenso sollen die R15 CSI Verfahren mit dem aktuellen in der Standardisierung besprochenen Release 16 Verfahren verglichen werden.



Thaller, Christopher;
Betrachtung und schaltungstechnische Implementierung des Random-Demodulator-Konzeptes für Millimeterwellenkommunikationssysteme. - Ilmenau. - 62 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2019

Hohe Datenübertragungsraten in der Kommunikationstechnik werden immer wichtiger. Es werden große Bandbreiten benötigt, die in niedrigen Frequenzbereichen nicht zusammenhängend verfügbar sind. Der komprimierende Analog-Informationswandler versucht, die Informationen direkt aus dem Analogsignal mit Compressed Sensing (CS) zu erfassen. Er arbeitet mit niedrigeren Raten, als von Nyquist gefordert. CS wird grundsätzlich verwendet, um Signale zu erfassen, die entweder spärlich oder komprimierbar sind. Der Random Demoldulator ist eine Anwendung der Theorie von CS mit dem Ziel, die Grenzen der klassischen Abtasttechniken auf der Grundlage des Shannon Nyquist Theorems zu überwinden. Eine der wichtigsten Komponenten dieses Konzepts, der Multiplikator, ist Gegenstand dieser Arbeit. Dieser soll ein hochfrequentes Signal mit einer Bandbreite von 8 GHz im Frequenzbereich 24 GHz bis 32 GHz mit einer pseudo zufälligen Pulsfolge von 1 und -1 über einem Frequenzbereich von 4 MHz bis 32 GHz multiplizieren. Um zu erforschen, ob der in dieser Arbeit betrachtete Vier-Quadranten-Multiplikator für das RD-Konzept in Millimeterwellen-Kommunikationssystemen angewandt werden kann, werden Simulationen in der Chipentwurfsumgebung Cadence Virtuoso durchgeführt. Es wird die Linearität, die Verstärkung und das Rauschverhalten dieser Schaltung analysiert. Einer der wichtigsten Aspekte in dieser Analyse ist das Herausnden der Grenzen der Schaltung bezüglich der Linearität bei hohen Frequenzen. Im Vergleich zu den üblichen Verstärkungs- und Rauschwerten für den Mobilfunk weist die Schaltung eine gute Linearität auf. Das Rauschen ist höher im Vergleich zu Schaltungen in der Literatur, aber es ist für die Anwendung ausreichend gut. Aus den in dieser Arbeit simulierten Ergebnissen ist ein positives Fazit zu ziehen. Allerdings gibt es noch einige Aspekte der Schaltung und des Random Demodulators, die weiter geprüft werden mussen.



Rudnik, Philipp;
Characterization and calibration of software-defined radios for MIMO channel sounding. - Ilmenau. - 127 Seiten
Technische Universität Ilmenau, Masterarbeit 2019

Die vorliegende Arbeit untersucht einen MIMO Channel Sounder, basierend auf einer Software-defined radio (SDR) Plattform. Basismodule sind SDRs vom Typ USRP-2954R (Sender) und USRP-2955 (Empfänger) sowie entsprechende Hochgeschwindigkeits-Datenübertragung und -speicher. Besonderes Merkmal des Messsystems ist die parallele, phasenkohärente Aufzeichnung von 32 Empfangskanälen bis 6 GHz Trägerfrequenz mit 80 MHz Bandbreite. Für den Messeinsatz ist das System zunächst zu charakterisieren und zu kalibrieren. Dies bedeutet die Erfassung der Systemfrequenzgänge (Sender und parallele Empfänger) über der Zeit (Einschwingverhalten, Kurzzeit- und Langzeitstabilität) für jeden Sende- und Empfangskanal bei variabler Vorverstärkung sowie die Untersuchung von Temperatureinflüssen. Die Kenntnis der Systemfrequenzgänge zu jedem Zeitpunkt ist notwendig, um die Charakteristik des Mobilfunkkanals aus den Messdaten extrahieren zu können. Ansatz ist die Anregung des Systems mit einem Multisinus-Testsignal (crestfaktor-optimierter Breitband-Chirp mit quadratischer Phase) mit 80 MHz Bandbreite, wie es auch im Praxisfall verwendet wird. Dieses Signal wird per Kabel in das parallele Empfangssystem eingespeist - wahlweise über einen hochwertigen Signalgenerator oder über das Sende-USRP. Synchronizität zwischen Sender und Empfänger wird über eine gemeinsame Referenzverteilung (clock distribution accessory) sichergestellt. Desweiteren wird eine automatisierte Routine zur back-to-back Kalibrierung in LabVIEW implementiert, die sich in vorhandenene Messsoftware integriert. Besondere Aufmerksamkeit wird dem Verhalten des Mehrkanal-Empfängers in Form einer Reihe von Messungen über viele Stunden gewidmet. Im Ergebnis liegen mehr als ein Terabyte Rohdaten vor, deren Analyse folgende wesentliche Erkenntnisse liefern: Das System benötigt etwa 1,5 Stunden Einlaufzeit, um in einen stabilen Zustand zu gelangen. Die Langzeit-Phasendrift bei konstanter Umgebungstemperatur beträgt etwa 5 Grad/Stunde. Der Gangunterschied zwischen den verschiedenen Kanälen beträgt <1 Grad in einem SDR und <8 Grad zwischen unterschiedlichen SDRs. Alle Daughterboards weisen einen Amplitudenunterschied von ca. 3 dB zwischen beiden Kanälen auf. Auf Temperaturveränderungen reagiert das System mit einem erneuten Einlaufvorgang (Phasen- und Amplitudendrifts).



Rayapaneni, Durga Teja;
Optimization of private LTE network parameters to improve reliability of LTE connected drones in search and rescue scenarios. - Ilmenau. - 89 Seiten
Technische Universität Ilmenau, Masterarbeit 2019

Die jüngste Anwendung der Kommunikationstechnologie wurde im Bereich der unbemannten Luftfahrzeuge (UAVs) für seine zahlreichen Anwendungen wie Militär-, Such- und Rettungseinsätze, Überwachung und Aufklärung usw. gefunden. Mit der Konvergenz von LTE-Kommunikation (Long-Term Evolution) und UAV kann eine zuverlässige Netzwerkkonnektivität und -abdeckung bereitgestellt werden, was für Katastrophenhilfeanwendungen bei einem Netzwerkausfall von immenser Bedeutung ist. Für die Luftbewertung im Rahmen dieser Masterarbeit wird die Drohnen-Benutzerausrüstung mit Nokia Flexizone verbunden, einer Basisstation mit 3GPP LTE Freigabe 14 Technologie über die Luft Schnittstelle. Innerhalb der Arbeit wird für die betrachtete intrafrequente Übergabe (HO) ein Marke-vorher-Pause-Verfahren mit der Integration von synchronem Zufallszugriffs - weniger als Übergabealgorithmus implementiert. Eine Messreihe von Drohnen-Antriebstests und Gehtest wurde durchgeführt, um die Ergebnisse in Bezug auf Netzwerksignalstärke, Referenzleistungssignal (RSRP), Signal-Rausch-Verhältnis (SNR), Durchsatz, Anzahl der ausgelösten HO und die Verzögerung zu bewerten. In HO mit Richtungs- und Omni-Richtungsantenne erfahren. Die Ergebnisse der Messreihe zeigen, dass die UE während des Drohnen-Antriebstests die Signaleigenschaften verbessert hat, da die Messungen über den Luft-zu-Boden (A2G)-Kanal durchgeführt werden. Die Gehtestmessungen ähneln jedoch eher einem herkömmlichen Netzwerkaufbau, und eine zuverlässige Netzwerkverbindung war aufgrund einer Vorortumgebung mit dichten Bäumen eine Herausforderung. Bei Drohnen-Antriebstests sind die ausgelösten HO aufgrund der Eigenschaften der Richtantenne geringer als bei der omnidirektionalen Antenne, und die minimale erfahrene HO-Verzögerung beträgt 20 ms. Die Gehtestmessungen führten zu einer reduzierten Anzahl von HO mit Richtungsantenne mit einer minimalen Verzögerung von 40 ms ausgelöst. Die Messreihe bietet großartige Einblicke in die Luftkommunikation, indem die Drohne als UE für 3GPP LTE-Konnektivität in den Ereignissen der Katastrophenhilfe und des Katastrohenmanagements verwendet wird.



Schwock, Felix;
Parallel real-time estimation of SDR transceiver imperfections. - Ilmenau. - 108 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2019

Ziel dieser Arbeit ist die Entwicklung eines Echtzeit-Messsystems für eine automatisierte Bestimmung von Verzerrungseffekten, die bei SDRs auftreten. Der Messaufbau besteht aus einem Signalgenerator, den zu vermessenden SDRs und einem Computer, auf welchem die entwickelte Messsoftware läuft. Der Signalgenerator erzeugt ein Zweitonsignal mit variablen Frequenzen (mit einem Tonabstand von z.B. 50 kHz oder 100 kHz), wobei der gesamte Eingangsfrequenzbereich des zu testenden Gerätes durchlaufen wird. Dies entspricht für das in der Arbeit vermessene USRP X310 mit UBX160 Daughterboard einem Bereich von 1 GHz bis 6 GHz. Die entwickelte Messsoftware realisiert drei Hauptfunktionen: (1) Einstellen des Signalgenerators, (2) Überwachen des Einschwingvorgangs des Signalgenerators (Verifizieren des eingeschwungenen Zustands), (3) Analysieren des SDR Ausgangssignals indem alle Töne des Signals für ein gegebenes Eingangssignal geschätzt werden. Auf Basis dessen können vom SDR verursachte Verzerrungseffekte, wie zum Beispiel IQ-Imbalance und In-Band-Nichtlinearitäten, bestimmt werden. Dabei ermöglicht eine modulare Implementierung in Python und C eine flexible Anpassung an unterschiedliche Messaufgaben, sowie die gleichzeitige Charakterisierung mehrerer SDRs. Der Einsatz von Multithreading in der C Implementierung erlaubt zudem eine parallele Ausführung des Programmcodes auf Mehrkernprozessoren. Der Zugriff auf die Samples der SDRs basiert auf einer Shared-Memory Architektur, wobei jedes SDR einen Ringspeicher mit einer Rate von 200 MS/s kontinuierlich mit Samples befüllt. Die Auswertung in Echtzeit wird dadurch sichergestellt, dass erworbene Samples teilweise verworfen werden bis die Schätzprozesse beendet sind. Durch den Einsatz moderner Hardware (Intel Xeon E5-1680 v4 Prozessor) können mehr als die Hälfte der erworbenen Samples für die Bestimmung der SDR Verzerrungseffekte verwendet werden. Tests haben gezeigt, dass eine komplette Charakterisierung von 1 GHz bis 6 GHz mit einem Tonabstand von 100 kHz und einer Gesamtzahl von 500000 Einzelmessungen, wobei für jede Messung 2^18 Samples verwendet wurden, in 45 Minuten durchgeführt werden kann. Für die parallele Vermessung von zwei SDRs (USRP X310 mit UBX160 Daughterboard) betrug die Messzeit 55 Minuten.



Mette, Lisa Marie;
Frequency-dependent modeling of homodyne transceiver imperfections. - Ilmenau. - 88 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2019

In dieser Arbeit wird ein Modell entwickelt, das die typischerweise bei Homodynempfängern auftretenden Verzerrungseffekte beschreibt. Dafür wird ein frequenzunabhängiger Ansatz für die Modellierung von In-Band Intermodulationsverzerrungen (IMDs) und I/Q Imbalance um den Aspekt der Frequenzabhängigkeit erweitert. Die Bestimmung der zugehörigen Modellparameter wird für den typischen Fall der Zweitonanregung ausführlich erläutert. Anschließend wird das entwickelte Modell verwendet, um ein Software-Defined Radio (SDR) des Typs Universal Software Radio Peripheral (USRP) X310 mit UBX160 Daughterboard zu charakterisieren. Um das frequenzabhängige Verhalten der Nichtlinearitäten dritter Ordnung sowie I/Q Imbalance des X310 zu erfassen, werden Zweitonmessungen im Frequenzbereich von 1 bis 6 GHz mithilfe des Modells ausgewertet. Dabei wird deutlich, dass die Verzerrungen durch I/Q Imbalance überwiegen. Außerdem werden die Verhältnisse der Modellparameter mit dem Intermodulationsabstand und dem Spiegelfrequenzunterdrückungsfaktor (IRR) des SDRs verglichen. Somit wird bestätigt, dass der in dieser Arbeit vorgestellte Modellansatz geeignet ist, um die bei Homodynempfängern auftretenden Verzerrungseffekte frequenzabhängig zu modellieren.



Engelhardt, Maximilian;
Characterization and modeling of distributed oscillator drift and jitter. - Ilmenau. - 65 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2019

Die präzise Synchronisation von Uhren ist für viele Messanwendungen von grundlegender Bedeutung. Diese Arbeit entwickelt eine Softwareumgebung für die Messung von verteilten Uhren mit dem Network Time Protocol (NTP) und dem Precision Time Protocol (PTP). Die Softwareumgebung basiert auf der Unterstützung von Hardware-Timestamping und reduziert negative Auswirkungen von Jitter, um eine Genauigkeit im Sub-Mikrosekunden-Bereich auf Standard-PC-Hardware zu erreichen. Anschließend wird die Softwareumgebung verwendet, um eine Messkampagne durchzuführen, die sowohl lokale Uhren als auch zahlreiche, weltweit verteilte NTP-Server umfasst. Die bei den durchgeführten Zeitmessungen beobachtbaren Effekte lassen sich in Messfehler (Jitter) und tatsächliche Abweichung der Uhren (Drift) unterteilen. Für beide werden Modelle entwickelt, implementiert und bewertet, die die Extraktion der signifikanten Merkmale eines Signals und die anschließende Synthese ähnlicher Daten ermöglichen. Die so erzeugten Testsignale sind eine wertvolle Grundlage für den Vergleich von Synchronisationsalgorithmen. Für den Jitter wurde ein Markov-Modell erster Ordnung derart modifiziert, dass es den Kontext der Messungen beachtet, wodurch es die stochastischen Eigenschaften des ursprünglich analysierten Signals zuverlässig reproduzieren konnte. Für den Drift wurde ein neuartiger Ansatz entwickelt, der auf iterativer Zerteilung und auto-regressiven (AR) Modellen basiert, der eine erhebliche Reduzierung der Anzahl von Parametern im Vergleich zu bestehenden Lösungen gestattet und gleichzeitig eine genaue Reproduktion der kurz- und langfristigen Eigenschaften von Oszillatoren ermöglicht.