Erscheinungsjahr 2022

Anzahl der Treffer: 96
Erstellt: Mon, 22 Apr 2024 23:19:52 +0200 in 0.0858 sec


Döring, Nicola; Mikhailova, Veronika; Brandenburg, Karlheinz; Broll, Wolfgang; Groß, Horst-Michael; Werner, Stephan; Raake, Alexander
Digital media in intergenerational communication: status quo and future scenarios for the grandparent-grandchild relationship. - In: Universal access in the information society, ISSN 1615-5297, Bd. 23 (2024), 1, S. 379-394

Communication technologies play an important role in maintaining the grandparent-grandchild (GP-GC) relationship. Based on Media Richness Theory, this study investigates the frequency of use (RQ1) and perceived quality (RQ2) of established media as well as the potential use of selected innovative media (RQ3) in GP-GC relationships with a particular focus on digital media. A cross-sectional online survey and vignette experiment were conducted in February 2021 among N = 286 university students in Germany (mean age 23 years, 57% female) who reported on the direct and mediated communication with their grandparents. In addition to face-to-face interactions, non-digital and digital established media (such as telephone, texting, video conferencing) and innovative digital media, namely augmented reality (AR)-based and social robot-based communication technologies, were covered. Face-to-face and phone communication occurred most frequently in GP-GC relationships: 85% of participants reported them taking place at least a few times per year (RQ1). Non-digital established media were associated with higher perceived communication quality than digital established media (RQ2). Innovative digital media received less favorable quality evaluations than established media. Participants expressed doubts regarding the technology competence of their grandparents, but still met innovative media with high expectations regarding improved communication quality (RQ3). Richer media, such as video conferencing or AR, do not automatically lead to better perceived communication quality, while leaner media, such as letters or text messages, can provide rich communication experiences. More research is needed to fully understand and systematically improve the utility, usability, and joy of use of different digital communication technologies employed in GP-GC relationships.



https://doi.org/10.1007/s10209-022-00957-w
Löffelholz, Martin;
[Rezension von: Störmer, Maja, 1990-, Krisenkommunikation in der digitalen Gesellschaft]. - In: Publizistik. - Wiesbaden : VS Verl. für Sozialwiss., 2000- , ISSN: 1862-2569 , ZDB-ID: 2273951-8, ISSN 1862-2569, Bd. 68 (2023), 1, S. 151-153

https://doi.org/10.1007/s11616-022-00775-3
Cheng, Pengfei; Döll, Joachim; Romanus, Henry; Wang, Hongguang; Aken, Peter Antonie van; Wang, Dong; Schaaf, Peter
Reactive magnetron sputtering of large-scale 3D aluminum-based plasmonic nanostructure for both light-induced thermal imaging and photo-thermoelectric conversion. - In: Advanced optical materials, ISSN 2195-1071, Bd. 11 (2023), 6, 2202664, S. 1-7

Plasmonic nanostructures have attracted tremendous interest due to their special capability to trap light, which is of great significance for many applications such as solar steam generation and desalination, electric power generation, photodetection, sensing, catalysis, cancer therapy, and photoacoustic imaging. However, the noble metal-based (Au, Ag, Pd) plasmonic nanostructures with expensive costs and limitations to large-scale fabrication restrict their practical applications. Here, a novel and noble-metal-free Al/AlN plasmonic nanostructure fabricated by a reactive magnetron sputtering at the elevated temperature of 200 ˚C is presented. The unique 3D Al/AlN plasmonic nanostructures show a highly efficient (96.8%) and broadband (full solar spectrum) absorption and a strong photothermal conversion effect on its surface, demonstrating the potential in applications in light-induced thermal imaging and photo-thermoelectric power generation. This simple fabrication method and the developed Al/AlN plasmonic nanostructure combine excellent light trapping performance, abundant and low-cost Al and N elements, good heat localization effect, and scalable fabrication method, suggesting a promising alternative to noble-metal plasmonic nanostructures for photonic applications.



https://doi.org/10.1002/adom.202202664
Xu, Changfan; Dong, Yulian; Shen, Yonglong; Zhao, Huaping; Li, Liqiang; Shao, Guosheng; Lei, Yong
Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: challenges and perspectives. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 15, 2206445, S. 1-30

Alkali metal-CO2 batteries, which combine CO2 recycling with energy conversion and storage, are a promising way to address the energy crisis and global warming. Unfortunately, the limited cycle life, poor reversibility, and low energy efficiency of these batteries have hindered their commercialization. Li-CO2 battery systems have been intensively researched in these aspects over the past few years, however, the exploration of Na-CO2 batteries is still in its infancy. To improve the development of Na-CO2 batteries, one must have a full picture of the chemistry and electrochemistry controlling the operation of Na-CO2 batteries and a full understanding of the correlation between cell configurations and functionality therein. Here, recent advances in CO2 chemical and electrochemical mechanisms on nonaqueous Na-CO2 batteries and hybrid Na-CO2 batteries (including O2-involved Na-O2/CO2 batteries) are reviewed in-depth and comprehensively. Following this, the primary issues and challenges in various battery components are identified, and the design strategies for the interfacial structure of Na anodes, electrolyte properties, and cathode materials are explored, along with the correlations between cell configurations, functional materials, and comprehensive performances are established. Finally, the prospects and directions for rationally constructing Na-CO2 battery materials are foreseen.



https://doi.org/10.1002/smll.202206445
Hunold, Alexander; Haueisen, Jens; Nees, Frauke; Moliadze, Vera
Review of individualized current flow modeling studies for transcranial electrical stimulation. - In: Journal of neuroscience research, ISSN 1097-4547, Bd. 101 (2023), 4, S. 405-423, insges. 19 S.

There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.



https://doi.org/10.1002/jnr.25154
Neitzel, Benedikt; Puch, Florian
Application of capacitive sensors and controlled injection pressure to minimize void formation in resin transfer molding. - In: Polymer composites, ISSN 1548-0569, Bd. 44 (2023), 3, S. 1658-1671

Void formation as a result of irregular resin flow at the flow front is discussed and a practical method for reducing void formation during resin transfer molding (RTM) is introduced. In this study, a sensor system is developed for in situ measurement of resin velocity inside a closed cavity. Assisted by the acquired data, a resin injection system is augmented to automatically adjust the injection pressure and achieve a uniform flow front velocity. It is proven, that the developed system is suited to monitor the resin flow front and is able to sufficiently control flow velocity of a linear flow front. Test specimen produced by this method show significantly reduced void contents in comparison to a common resin transfer molding process.



https://doi.org/10.1002/pc.27195
Ehrmann, Jonathan; Reichert, Robert; Gutschmidt, Stefanie; Sattel, Thomas
Steep resonance of parametrically excited active MEMS cantilevers for dynamic mode in Atomic Force Microscopy. - In: Proceedings in applied mathematics and mechanics, ISSN 1617-7061, Bd. 22 (2023), 1, e202200230, S. 1-6

Ongoing developments in nanotechnology demand higher spatial resolution and thus, higher amplitude sensitivity in Atomic Force Microscopy (AFM). In this work, active cantilevers with integrated sensor and actuator systems are parametrically excited using a novel, analog feedback circuit. With that it is possible to adapt the strength and sign of a cubic nonlinearity which provides a bound to the amplitudes in resonance operation. The system response shows steeper resonance curves and therefore higher amplitude sensitivities compared to forced excited cantilevers. Theoretical findings are validated experimentally.



https://doi.org/10.1002/pamm.202200230
Espuny Díaz, Alberto; Girao, Antonio
Hamiltonicity of graphs perturbed by a random regular graph. - In: Random structures & algorithms, ISSN 1098-2418, Bd. 62 (2023), 4, S. 857-886

https://doi.org/10.1002/rsa.21122
Espuny Díaz, Alberto;
Hamiltonicity of graphs perturbed by a random geometric graph. - In: Journal of graph theory, ISSN 1097-0118, Bd. 103 (2023), 1, S. 12-22

We study Hamiltonicity in graphs obtained as the union of a deterministic n-vertex graph H with linear degrees and a d-dimensional random geometric graph G d (n, r) for any d ≥ 1. We obtain an asymptotically optimal bound on the minimum r for which a.a.s. H ∪ G d (n, r) is Hamiltonian. Our proof provides a linear time algorithm to find a Hamilton cycle in such graphs.



https://doi.org/10.1002/jgt.22901
Philipp, Friedrich;
Relatively bounded perturbations of J-non-negative operators. - In: Complex analysis and operator theory, ISSN 1661-8262, Bd. 17 (2023), 1, 14, insges. 30 S.

We improve known perturbation results for self-adjoint operators in Hilbert spaces and prove spectral enclosures for diagonally dominant J-self-adjoint operator matrices. These are used in the proof of the central result, a perturbation theorem for J-non-negative operators. The results are applied to singular indefinite Sturm-Liouville operators with Lp-potentials. Known bounds on the non-real eigenvalues of such operators are improved.



https://doi.org/10.1007/s11785-022-01263-2