Erscheinungsjahr 2023

Anzahl der Treffer: 114
Erstellt: Wed, 24 Apr 2024 23:17:26 +0200 in 0.0555 sec


Ved, Kalpan; Lenk, Claudia; Ivanov, Tzvetan; Hövel, Philipp; Ziegler, Martin
Bio-inspired, adaptive acoustic sensor : Sensing properties in dependence of feedback parameters. - In: AIP conference proceedings, ISSN 1551-7616, Bd. 3062 (2024), 1, 040011, S. 040011-1-040011-10

Pre-processing of the sound signal during sensing is an integral functionality of the cochlea, the part of human hearing responsible for sound sensing. This pre-pocessing, which is integrated into the sensing stage directly, enables the remarkable properties of human hearing. Similarly, integrating some of these pre-processing functionalities in technological speech processing systems strongly improves their recognition performance.We developed a bio-inspired, adaptive acoustic sensor with pre-processing capabilities like nonlinear amplification and frequency filtering functionality. The sensor is composed of a single clamped silicon beam with integrated deflection sensing and thermo-mechanical actuation, subjected to a real-time feedback. While the resonance frequency and bandwidth are determined by the geometry of the sensor beam, its transfer characteristics can be switched dynamically from linear to nonlinear regime by changing the feedback parameters. In the linear regime, the feedback controls the sensitivity and bandwidth of the sensors. Here, we elaborate on the influence of the sign of feedback strength and offset on the sensor behaviour. Changing the sign of the feedback parameters switches between amplification and damping behaviour, enabling the change of sensitivity by 44 dB. Thereby, complex oscillation modes are observed for feedback parameters with similar polarity.



https://doi.org/10.1063/5.0189488
Käufer, Theo; Cierpka, Christian
Volumetric Lagrangian temperature and velocity measurements with thermochromic liquid crystals. - In: Measurement science and technology, ISSN 1361-6501, Bd. 35 (2024), 3, 035301, S. 1-11

We propose a Lagrangian method for simultaneous, volumetric temperature and velocity measurements. As tracer particles for both quantities, we employ encapsulated thermochromic liquid crystals (TLCs). We discuss the challenges arising from color imaging of small particles and present measurements in an equilateral hexagonal-shaped convection cell of height h = 60 mm and distance between the parallel side walls w = 10^4 mm, which corresponds to an aspect ratio Γ = 1.73. As fluid, we use a water-glycerol mixture to match the density of the TLC particles. We propose a densely-connected neural network, trained on calibration data, to predict the temperature for individual particles based on their particle image and position in the color camera images, which achieves uncertainties below 0.2 K over a temperature range of 3 K. We use Shake-the-Box to determine the 3D position and velocity of the particles and couple it with our temperature measurement approach. We validate our approach by adjusting a stable temperature stratification and comparing our measured temperatures with the theoretical results. Finally, we apply our approach to thermal convection at Rayleigh number Ra = 3.4 × 10^7 and Prandtl number Pr = 10.6. We can visualize detaching plumes in individual temperature and convective heat transfer snapshots. Furthermore, we demonstrate that our approach allows us to compute statistics of the convective heat transfer and briefly validate our results against the literature.



https://doi.org/10.1088/1361-6501/ad16d1
Vasilyan, Suren; Rogge, Norbert; Preißler, Hannes; Starkloff, Michael; Schubert, Marco; Fröhlich, Thomas
Adaptation of metrology-grade ac current source in velocity mode of Planck-Balance 2: direct referencing induced voltages with ac quantum voltage standard. - In: Measurement science and technology, ISSN 1361-6501, Bd. 35 (2024), 1, 015026, S. 1-11

The adaptation of developed metrology-grade ac current source (MCS) to the velocity mode of measurements of the Planck-Balance 2 as a means for generating ac mechanical oscillations is presented. The universality in operating with the MCS unit especially practical for the Planck-Balance setup for frequencies of 0.1 Hz-20 Hz (including but not limited to the negligence of a broader range of 0.01 Hz up to several hundred Hz) and for amplitudes of up to 10 mA with 16 (offset with 14)-bit effective resolution is demonstrated. MCS allows generating complex ac waveform signals as waveform synthesizers by adding to the original signal an extra five independent harmonic components, each of which with an adjustable resolution of 10 ns for phase and 16-bit for amplitude. Additionally, the MCS is supported by an external clock at 10 MHz frequency which serves also as a common reference time base for the comparison between the direct output signal of MCS, or of the induced voltage in the coil of the Planck-Balance resulting due to the applied current by MCS, with the ac quantum voltage standard at the required accuracy levels.



https://doi.org/10.1088/1361-6501/ad006c
Spetzler, Benjamin; Abdel, Dilara; Schwierz, Frank; Ziegler, Martin; Farrell, Patricio
The role of vacancy dynamics in two-dimensional memristive devices. - In: Advanced electronic materials, ISSN 2199-160X, Bd. 10 (2024), 1, 2300635, S. 1-18

Two-dimensional layered transition metal dichalcogenides (TMDCs) are promising memristive materials for neuromorphic computing systems. Despite extensive experimental work, the underlying switching mechanisms are still not understood, impeding progress in material and device functionality. This study reveals the dominant role of defect dynamics in the switching process of 2D TMDC materials. The switching process is governed by the formation and annihilation dynamics of a local vacancy depletion zone. It explains the distinct features of the device characteristics observed experimentally, including fundamentally different device behavior previously thought to originate from multiple mechanisms. Key influence factors are identified and discussed with a fully coupled and dynamic charge transport model for electrons, holes, and ionic point defects, including image-charge-induced Schottky barrier lowering (SBL). Thermal effects and local Joule heating are considered by coupling the transient heat transfer equation to the electronic properties. The model is validated with hysteresis and pulse measurements for various lateral 2D MoS2-based devices, strongly corroborating the relevance of vacancy dynamics in TMDC devices and offering a new perspective on the switching mechanisms. The insights gained from this study can be used to extend the functional behavior of 2D TMDC memristive devices in future neuromorphic computing applications.



https://doi.org/10.1002/aelm.202300635
Wang, Honglei; Bo, Yifan; Klingenhof, Malte Philipp Helmuth; Peng, Jiali; Wang, Dong; Wu, Bing; Pezoldt, Jörg; Cheng, Pengfei; Knauer, Andrea; Hua, Weibo; Wang, Hongguang; Aken, Peter Antonie van; Sofer, Zdeněk; Strasser, Peter; Guldi, Dirk; Schaaf, Peter
A universal design strategy based on NiPS3 nanosheets towards efficient photothermal conversion and solar desalination. - In: Advanced functional materials, ISSN 1616-3028, Bd. 34 (2024), 8, 2310942, S. 1-11

2D nanomaterials are proposed as promising photothermal materials for interfacial photothermal water evaporation. However, low evaporation efficiency, the use of hazardous hydrofluoric solution, and poor stability severely limit their practical applications. Here, a mixed solvent exfoliation surface deposition (MSESD) strategy for the preparation of NiPS3 nanosheets and NiPS3/polyvinyl alcohol (PVA) converter is successfully developed. The converter is obtained by drop-casting the NiPS3/PVA nanosheets onto a sponge. The PVA is mainly deposited on the edge of NiPS3 nanosheets, which not only improves the stability of NiPS3 nanosheets, but also adheres to the sponge to prepare a 3D photothermal converter, which shows an evaporation rate of 1.48 kg m−2 h−1 and the average photothermal conversion efficiency (PTCE) of 93.5% under a light intensity of 1 kW m−2. The photothermal conversion mechanism reveals that the energy of absorbed photons in NiPS3 nanosheets can be effectively converted into heat through non-radiative photon transitions as well as multiple optical interactions. To the best of the knowledge, this is the first report on the application of 2D metal-phosphorus-chalcogen (MPChx) for solar desalination, which provides new insights and guidance for the development of high-performance 2D photothermal materials.



https://doi.org/10.1002/adfm.202310942
Reuter, Christoph; Ecke, Gernot; Strehle, Steffen
Exploring the surface oxidation and environmental instability of 2H-/1T’-MoTe2 using field emission based scanning probe lithography. - In: Advanced materials, ISSN 1521-4095, Bd. 36 (2024), 4, 2310887, S. 1-14

An unconventional approach for the resistless nanopatterning 2H- and 1T’-MoTe2 by means of scanning probe lithography is presented. A Fowler-Nordheim tunneling current of low energetic electrons (E = 30-60 eV) emitted from the tip of an atomic force microscopy (AFM) cantilever is utilized to induce a nanoscale oxidation on a MoTe2 nanosheet surface under ambient conditions. Due to the water solubility of the generated oxide, a direct pattern transfer into the MoTe2 surface can be achieved by a simple immersion of the sample in deionized water. The tip-grown oxide was characterized using Auger electron and Raman spectroscopy, revealing it consists of amorphous MoO3/MoOx as well as TeO2/TeOx. With the presented technology in combination with subsequent AFM imaging it was possible to demonstrate a strong anisotropic sensitivity of 1T’-/(Td)-MoTe2 to aqueous environments. We finally used the discussed approach to structure a nanoribbon field effect transistor out of a few-layer 2H-MoTe2 nanosheet. This article is protected by copyright. All rights reserved



https://doi.org/10.1002/adma.202310887
Oertel, Erik; Manske, Eberhard
Influence of the reference surface and AFM tip on the radius and roundness measurement of micro spheres. - In: Measurement science and technology, ISSN 1361-6501, Bd. 35 (2024), 2, 025010, S. 1-16

The performance of tactile and optical surface sensors for nano and micro coordinate measuring machines is currently limited by the lack of precisely characterised micro spheres, since established strategies have mainly been developed for spheres in the range of millimetres or above. We have, therefore, recently focused our research efforts towards a novel strategy for the characterisation of spheres in the sub-millimetre range. It is based on a set of atomic force microscope (AFM) surface scans in conjunction with a stitching algorithm. To obtain an uncertainty statement, the uncertainty about the shape of the reference surface needs to be propagated via the shape of the AFM tip to the actual measurement object. However, the sampling process of an AFM is non-linear and the processing of AFM scans requires complex algorithms. We have, therefore, recently begun to model the characterisation of micro spheres through simulations. In this contribution, this model is extended by the influence of the tip and reference surface. The influence of the tip’s shape and reference surface is investigated through virtual and real experiments. The shape of the tip is varied by using tips with mean radii of 200 nm and 2 μm while sampling the same ruby sphere with a mean radius of 150 μm. In general, the simulation results imply that an uncertainty of less then 10 nm is achievable. However, an experimental validation of the model is still pending. The experimental investigations were limited by the lack of a suitable cleaning strategy for micro parts, which demonstrates the need for further investigations in this area. Although the characterisation of a full sphere has already been demonstrated, the investigations in this contribution are limited to equator measurements.



https://doi.org/10.1088/1361-6501/ad03b7
Supreeti, Shraddha; Fischer, Michael; Fritz, Mathias; Müller, Jens
High-resolution patterning on LTCC by transfer of photolithography-based metallic microstructures. - In: International journal of applied ceramic technology, ISSN 1744-7402, Bd. 21 (2024), 2, S. 1180-1190

The growing applications and constant miniaturization of electronic devices and of low-temperature co-fired ceramics (LTCC) in various fields, such as aviation, telecommunications, automotive, satellite communications, and military, have led to an increase in the demand for LTCC. Such prospects arise due to the continuous scaling down of components and high-density interconnection in electronics packaging. This paper reports a technique for the transfer of high-resolution microstructures from silicon substrates to LTCC. In this method, gold and copper patterns were formed by photolithography, electrodeposition, and residual layer stripping on silicon substrate. Lithography provides the opportunity to create and transfer complex patterns for use in several different applications and electroplating enables the use of pure metal for excellent electrical properties. The developed structures were transferred onto a top layer of LTCC tape using hot embossing. Then, the subsequent layers were stacked, laminated, and sintered. A resolution of 1.5 μm after free sintering and 4.5 μm after pressure-assisted sintering was achieved. This distinctive method can be useful for several applications requiring high-resolution and superior electrical properties.



https://doi.org/10.1111/ijac.14569
Döring, Nicola; Walter, Roberto; Scharmanski, Sara
Parental sex education and sexual risk behavior of daughters and sons: findings from the representative survey “Youth Sexuality” :
Elterliche Sexualaufklärung und sexuelles Risikoverhalten bei Töchtern und Söhnen: Befunde aus der Repräsentativbefragung „Jugendsexualität“. - In: Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, ISSN 1437-1588, Bd. 67 (2024), 1, S. 14-22

Hintergrund - Sexualaufklärung im Elternhaus soll laut Sozialisationstheorie zu mehr sexueller Handlungskompetenz bei Jugendlichen führen. Aktuelle Daten für Deutschland fehlen jedoch. Ziel der Arbeit - Vor diesem Hintergrund war es Ziel der vorliegenden Studie, erstmals das allgemeine Sprechen über Sexualität im Elternhaus (Forschungsfrage 1, F1) sowie speziell die Verhütungsberatung durch die Eltern (F2) mit dem sexuellen Risikoverhalten der Jugendlichen in Verbindung zu setzen. Material und Methoden - Datengrundlage ist die 9. Welle der Repräsentativbefragung „Jugendsexualität“ der Bundeszentrale für gesundheitliche Aufklärung (BZgA). Analysiert wurden Daten aller sexuell aktiven 14- bis 17-jährigen Jugendlichen im Sample, von denen eigene Angaben zum Sexualverhalten sowie Angaben ihrer Eltern zum Aufklärungsverhalten vorliegen (N= 357). Zur Beantwortung der beiden Forschungsfragen wurden logistische Regressionsanalysen mit 4 zentralen Merkmalen des jugendlichen Sexualverhaltens gerechnet. Ergebnisse - Es zeigte sich, dass das Sprechen über Sexualität im Elternhaus bei Mädchen und Jungen positiv korreliert mit 1. dem erreichten Konsensalter beim ersten Geschlechtsverkehr, 2. einem positiven Erleben des ersten Geschlechtsverkehrs, 3. einem zuverlässigen Verhütungsverhalten und 4. einer geringen Anzahl an Sexualpartner*innen (F1). Das gleiche Ergebnismuster ergab sich für die Verhütungsberatung durch die Eltern (F2). Diskussion - Die positiven Zusammenhänge zwischen elterlicher Sexualaufklärung und risikoärmerem jugendlichen Sexualverhalten gilt es hinsichtlich der zugrunde liegenden Kausalmechanismen genauer zu untersuchen.



https://doi.org/10.1007/s00103-023-03783-4
Engemann, Thomas; Ispas, Adriana; Bund, Andreas
Electrochemical reduction of tantalum and titanium halides in 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquids. - In: Journal of solid state electrochemistry, ISSN 1433-0768, Bd. 0 (2023), 0, insges. 14 S.

The electrodeposition of tantalum-titanium–based films using different tantalum and titanium halides was investigated in two ionic liquids, namely, 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide ([BMP][TFSI]) and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([BMP][OTf]). Cyclic voltammetry was used to analyse the electrochemistry of the electrolytes and potentiostatic deposition was performed to evaluate the feasibility of electrodepositing tantalum-titanium–based layers. Both the metal salts and the ionic liquid influenced the electrochemical reduction of the tantalum and titanium halides significantly. While titanium halides considerably retarded the reduction of tantalum pentahalides and inhibited electrodeposition in many electrolytes, an electrolyte composition from which tantalum and titanium-containing layers could be deposited was identified. Specifically, in TaBr5 and TiBr4 in [BMP][TFSI], TiBr4 did not inhibit the deposition of tantalum and titanium was co-deposited itself by a three-step reduction mechanism as confirmed by cyclic voltammetry and energy-dispersive X-ray spectroscopy. Furthermore, [BMP][TFSI] led to smoother and more compact deposits.



https://doi.org/10.1007/s10008-023-05773-7