Technische Universität Ilmenau

Angewandte Neuroinformatik - Modultafeln der TU Ilmenau

Die Modultafeln sind ein Informationsangebot zu den Studiengängen der TU Ilmenau.

Die rechtsverbindlichen Studienpläne entnehmen Sie bitte den jeweiligen Studien- und Prüfungsordnungen (Anlage Studienplan).

Alle Angaben zu geplanten Lehrveranstaltungen finden Sie im elektronischen Vorlesungsverzeichnis.

Informationen und Handreichungen zur Pflege von Modulbeschreibungen durch die Modulverantwortlichen finden Sie unter Modulpflege.

Hinweise zu fehlenden oder fehlerhaften Modulbeschreibungen senden Sie bitte direkt an modulkatalog@tu-ilmenau.de.

Modulinformationen zu Modulnummer 1718 - allgemeine Informationen
Modulnummer1718
FakultätFakultät für Informatik und Automatisierung
Fachgebietsnummer2233 (Neuroinformatik und Kognitive Robotik)
Modulverantwortliche(r)Prof. Dr. Horst-Michael Groß
SpracheDeutsch
TurnusSommersemester
Vorkenntnisse

Neuroinformatik

Lernergebnisse und erworbene Kompetenzen

In Weiterführung der Lehrveranstaltung "Neuroinformatik und Maschinelles Lernen" erwerben die Studierenden hier System- und Fachkompetenzen für die Anwendung von Methoden der Neuroinformatik in anspruchsvollen Anwendungsfeldern der Signalverarbeitung, Mustererkennung, Bildverarbeitung und dem Maschinellen Lernen. Sie verfügen über Kenntnisse zur Strukturierung von Problemlösungen unter Einsatz von neuronalen und probabilistischen Techniken in anwendungsnahen, konkreten Projekten. Die Studierenden sind in der Lage, praktische Fragestellungen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte zu entwerfen und diese umzusetzen sowie bestehende Lösungen zu bewerten und ggf. zu erweitern. Sie erwerben Kenntnisse zu verfahrensorientiertem Wissen, indem für praktische Klassifikations- und Approximationsprobleme verschiedene neuronale und statistische Lösungsansätze vergleichend behandelt und anhand von konkreten Anwendungen demonstriert werden.

Inhalt

Weiterführung und Vertiefung der Vorlesung "Neuroinformatik und Maschinelles Lernen" durch Ergänzung der Grundlagen um applikationsspezifisches Wissen. Die Lehrveranstaltung vermittelt sowohl Faktenwissen als auch begriffliches, methodisches und algorithmisches Wissen aus den folgenden Kernbereichen:

  • Prinzipielle Vorgehensweise am Beispiel eines Mustererkennungsproblems
  • Dimensionsreduktion und Datendekorrelation mittels Hauptkomponentenanalyse (PCA)
  • Quellenseparierung mittels Independent Component Analysis (ICA)
  • Überwachte Dimensionsreduktion mittels Linearer Diskriminanzanalyse (LDA)
  • Merkmalsauswahl mittels Signifikanzanalyse: Filter-, Wrapper- und Embedded-Techniken
  • Typische Netzwerkein- und Ausgabekodierungen
  • Techniken zur Informationsfusion sowie Ensemble Learning
  • Boosting-Techniken für leistungsfähige Klassifikatoren
  • Techniken zur Repräsentation zeitlicher Signale
  • Bewertung der Leistungsfähigkeit von Klassifikatoren mit geeigneten Gütemaßen
  • Entwicklung von Systemlösungen mit Neuronalen Netzen
  • Exemplarische Anwendungsbeispiele und Implementierungen aus den Bereichen biomedizinischen Datenanalyse, Mustererkennung, Bildverarbeitung, Robotik und Mensch-Maschine-Interaktion.

Zur Vertiefung des behandelten Stoffs wird die konkrete algorithmische Umsetzung wichtiger Verfahren in der Programmiersprache Python vermittelt.

Medienformen

Präsenzvorlesung mit Powerpoint, Arbeitsblätter zur Vorlesung, Übungsaufgaben, Videos, Python Apps, studentische Demo-Programme, e-Learning mittels „Jupyter Notebook”

 

https://moodle2.tu-ilmenau.de/enrol/index.php?id=3304

Literatur

Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification, 2nd ed., Wiley Interscience, 2000

- Sammut, C., Webb, G. I.: Enceclopedia of Machine Learning, Springer, 2006

- Zell, A.: Simulation Neuronaler Netzwerke, Addison-Wesley 1997

- Bishop, Ch.: Pattern Recognition and Machine Learning, Springer 2006

- Alpaydin, Ethem: Maschinelles Lernen, Oldenbourg Verlag 2008

- Murphy, K. : Machine Learning – A Probabilistic Perspective, MIT Press 2012

- Hyvärinen, A., Karhunen, J. Oja, E.: Independent Component Analysis. Wiley & Sons, 2001

- Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction: Foundations and Applications, Studies in fuzziness and soft computing 207, Springer, 2006

- Maltoni, D., et al.: Biometric Fusion, Handbook of Fingerprint Recognition, Kapitel 7, Springer, 2009

- Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, New York, Springer, 2001

- Goodfellow, I. et al.: Deep Learning, MIT Press 2016

 

Lehrevaluation

Pflichtevaluation:

Freiwillige Evaluation:

SS 2007 (Vorlesung, Übung)

SS 2008 (Vorlesung, Übung)

SS 2010 (Vorlesung, Übung)

SS 2011 (Vorlesung, Übung)

SS 2012 (Vorlesung, Übung)

SS 2013 (Vorlesung, Übung)

SS 2014 (Vorlesung, Übung)

SS 2015 (Vorlesung, Seminar)

SS 2016 (Vorlesung, Seminar)

SS 2017 (Vorlesung, Seminar)

SS 2018 (Vorlesung, Übung)

SS 2019 (Vorlesung, Übung)

Hospitation:

Spezifik Referenzmodul
ModulnameAngewandte Neuroinformatik
Prüfungsnummer2200187
Leistungspunkte4
SWS3
Präsenzstudium (h)33.75
Selbststudium (h)86.25
VerpflichtungPflichtmodul
Abschlussalternative Prüfungsleistung
Details zum Abschluss

90% Klausur 90 min + 10% Implementierung

Anmeldemodalitäten für alternative PL oder SLDie Anmeldung zur alternativen semesterbegleitenden Abschlussleistung erfolgt über das Prüfungsverwaltungssystem (thoska) außerhalb des zentralen Prüfungsanmeldezeitraumes. Die früheste Anmeldung ist generell ca. 2-3 Wochen nach Semesterbeginn möglich. Der späteste Zeitpunkt für die An- oder Abmeldung von dieser konkreten Abschlussleistung ist festgelegt auf den (falls keine Angabe, erscheint dies in Kürze):
max. Teilnehmerzahl
Spezifik im Studiengang Bachelor Biomedizinische Technik 2008, Bachelor Biomedizinische Technik 2013, Master Mathematik und Wirtschaftsmathematik 2013 (AM)
ModulnameAngewandte Neuroinformatik
Prüfungsnummer2200187
Leistungspunkte4
Präsenzstudium (h)34
Selbststudium (h)86
VerpflichtungWahlmodul
Abschlussalternative Prüfungsleistung
Details zum Abschluss

90% Klausur 90 min + 10% Implementierung

Anmeldemodalitäten für alternative PL oder SLDie Anmeldung zur alternativen semesterbegleitenden Abschlussleistung erfolgt über das Prüfungsverwaltungssystem (thoska) außerhalb des zentralen Prüfungsanmeldezeitraumes. Die früheste Anmeldung ist generell ca. 2-3 Wochen nach Semesterbeginn möglich. Der späteste Zeitpunkt für die An- oder Abmeldung von dieser konkreten Abschlussleistung ist festgelegt auf den (falls keine Angabe, erscheint dies in Kürze):
max. Teilnehmerzahl
Spezifik im Studiengang Master Wirtschaftsinformatik 2015, Master Wirtschaftsinformatik 2018
ACHTUNG: wird nicht mehr angeboten!
ModulnameAngewandte Neuroinformatik
Prüfungsnummer2200420
Leistungspunkte
Präsenzstudium (h)
Selbststudium (h)
VerpflichtungPflichtmodul
Abschlusskeiner
Details zum Abschluss

90% Klausur 90 min + 10% Implementierung

Anmeldemodalitäten für alternative PL oder SL
max. Teilnehmerzahl