Zeitschriftenaufsätze ab 2018

Anzahl der Treffer: 1646
Erstellt: Mon, 13 May 2024 23:21:23 +0200 in 0.0978 sec


Wu, Zhijun; Sha, Mo; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Ordered anodic aluminum oxide-based nanostructures for surface-enhanced Raman scattering: a review. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 7 (2024), 1, S. 11-31

As a promising spectroscopic technique, surface enhanced raman spectroscopy (SERS) has been intensively used in bio/chemical sensing, attributing to its unique advantages of ultrasensitive and accurate detection of trace amounts of analytes, high specific fingerprint-like features, fast response, and noninvasive sensing. The robustness and consistency of SERS signals in practical analytical applications highly rely on the composition, structural morphology, and uniformity of SERS substrates. These factors play a pivotal role in determining the intensity and reproducibility of the detected signals. SERS substrates based on ordered nanostructures that are fabricated from anodic aluminum oxide (AAO)-template-assisted approaches are of significant interest due to their cost effectiveness, scalability, precise structural control, and exceptionally ordered features. In this review, recent progress in SERS substrates with high sensitivity and reproducibility prepared from AAO templates is highlighted. We emphasize the optimization strategies toward achieving efficient SERS-active substrates by fine-tuning the size, composition, and morphology of AAO-derived ordered nanostructures. Furthermore, we delve into the discussion of flexible and smart SERS substrates, while also exploring key aspects pertinent to further amplifying SERS signals. Overall, this review aims to offer insights into the future integration of the AAO templates technique with SERS, providing crucial perspectives for forthcoming research in this field.



https://doi.org/10.1021/acsanm.3c04652
Skrickij, Viktor; Kojis, Paulius; Šabanovič, Eldar; Shyrokau, Barys; Ivanov, Valentin
Review of integrated chassis control techniques for automated ground vehicles. - In: Sensors, ISSN 1424-8220, Bd. 24 (2024), 2, 600, S. 1-40

Integrated chassis control systems represent a significant advancement in the dynamics of ground vehicles, aimed at enhancing overall performance, comfort, handling, and stability. As vehicles transition from internal combustion to electric platforms, integrated chassis control systems have evolved to meet the demands of electrification and automation. This paper analyses the overall control structure of automated vehicles with integrated chassis control systems. Integration of longitudinal, lateral, and vertical systems presents complexities due to the overlapping control regions of various subsystems. The presented methodology includes a comprehensive examination of state-of-the-art technologies, focusing on algorithms to manage control actions and prevent interference between subsystems. The results underscore the importance of control allocation to exploit the additional degrees of freedom offered by over-actuated systems. This paper systematically overviews the various control methods applied in integrated chassis control and path tracking. This includes a detailed examination of perception and decision-making, parameter estimation techniques, reference generation strategies, and the hierarchy of controllers, encompassing high-level, middle-level, and low-level control components. By offering this systematic overview, this paper aims to facilitate a deeper understanding of the diverse control methods employed in automated driving with integrated chassis control, providing insights into their applications, strengths, and limitations.



https://doi.org/10.3390/s24020600
Schaaf, Peter; Zyabkin, Dmitry
Mössbauer spectroscopy. - In: Encyclopedia of condensed matter physics, (2024), S. 15-28

The current chapter provides the reader with a general introduction of Mössbauer effect following by its unique utilization, which became known as Mössbauer spectroscopy. Mössbauer spectroscopy is based on the recoilless emission and following resonant absorption of gamma radiation by atomic nuclei and has been at the scientific forefront of physics, chemistry, biology, mineralogy for more than 60 years. Soon after the discovery of the Mössbauer effect, it became obvious that this effect can be used to study various properties of materials on a microscopic scale via hyperfine interactions with an unprecedented resolution. This was the beginning of a new analytical tool - Mössbauer spectroscopy. Today, it has developed into a standard analytical technique used in many laboratories and big research facilities. The current chapter provides the reader with a general introduction, explains the underlying hyperfine interactions and gives examples of the possible application of the method.



Jaziri, Nesrine; Schulz, Alexander; Bartsch, Heike; Müller, Jens; Tounsi, Fares
A novel 2-in-1 heat management and recovery system for sustainable electronics. - In: Energy conversion and management, ISSN 0196-8904, Bd. 303 (2024), 118171, S. 1-12

Overheating poses major challenges in miniaturized electronics, especially as their power consumption increases. For this reason, thermal management is a necessity for efficient electronics, and its optimization is a central task in the design especially for miniaturized compact electronics. On the other hand, recovering this waste energy could be beneficial for battery-free electronics such as wireless sensors and devices located in remote environments, where the charging or changing of batteries are challenging and delicate tasks. Furthermore, batteries are known for their storage capacity degradation over time and environmental pollution. This paper presents the design, development, demonstration, and validation of an innovative 2-in-1 heat management and recovery system for autonomous electronic devices. The design incorporates the use of thermal vias as in-package heat management and vertical thermocouples, enabling simultaneously management and recovery of the heat emitted from a Si-chip. The proposed design is fabricated in Low Temperature Co-fired Ceramic (LTCC) technology, allowing the creation of a monolithic package containing miniaturized multilayer microvias in the range of 90 µm using different materials to act as embedded thermal management and vertical thermocouples, simultaneously. The design consists of 20 lateral (Ag/Co) and 21 vertical (Ag/AgPd) micro-TEGs connected electrically in series in the system. The hybrid TEG is made by combining thick- and thin-film technologies, favoring the use of different materials and technologies with high power factors for further improvements in the field of thermal energy harvesting. The proposed design allows the management of 67 % of the IC temperature by reducing it from 246 ˚C to 80 ˚C using Ag and AgPd thermal vias. At the same time, the system recovers the lost thermal energy to generate 37.5 µW of electrical power at a temperature difference of 58 ˚C. The proposed approach allows simultaneously transitioning into green and sustainable battery-free electronics and enhances the devicés reliability by maintaining thermal stabilization in a miniaturized devices using a monolithic package.



https://doi.org/10.1016/j.enconman.2024.118171
Oppermann, Hannes; Thelen, Antonia; Haueisen, Jens
Single-trial EEG analysis reveals burst structure during photic driving. - In: Clinical neurophysiology, ISSN 1872-8952, Bd. 159 (2024), S. 66-74

Objective: Photic driving in the human visual cortex evoked by intermittent photic stimulation is usually characterized in averaged data by an ongoing oscillation showing frequency entrainment and resonance phenomena during the course of stimulation. We challenge this view of an ongoing oscillation by analyzing unaveraged data. Methods: 64-channel EEGs were recorded during visual stimulation with light flashes at eight stimulation frequencies between 7.8 and 23 Hz for fourteen healthy volunteers. Time-frequency analyses were performed in averaged and unaveraged data. Results: While we find ongoing oscillations in the averaged data during intermittent photic stimulation, we find transient events (bursts) of activity in the unaveraged data. Both resonance and entrainment occur for the ongoing oscillations in the averaged data and the bursts in the unaveraged data. Conclusions: We argue that the continuous oscillations in the averaged signal may be composed of brief, transient bursts in single trials. Our results can also explain previously observed amplitude fluctuations in averaged photic driving data. Significance: Single-trial analyses might consequently improve our understanding of resonance and entrainment phenomena in the brain.



https://doi.org/10.1016/j.clinph.2024.01.005
Bohm, Sebastian; Runge, Erich
Efficient analytical evaluation of the singular BEM integrals for the three-dimensional Laplace and Stokes equations over polygonal elements. - In: Engineering analysis with boundary elements, ISSN 0955-7997, Bd. 161 (2024), S. 70-77

Singularities in the fundamental solutions pose a mathematical challenge for all applications of the boundary element method, if the source and field point lie on the same element. To avoid complex and error-prone numerical procedures, analytical solutions for the integrals that arise are desirable. In this work, easy and efficiently to implement analytical solutions are presented for the fundamental solutions of the three-dimensional Stokes equation as well as Laplace’s equation. Explicit expressions are derived for general triangular elements using constant shape functions. In addition, options for extending to arbitrary polygonal elements are shown. In particular, the three cases that the incenter, the centroid or the vertices of the triangles are used as source points for the calculation are addressed. The impressive numerical efficiency of the method is demonstrated by explicit examples.



https://doi.org/10.1016/j.enganabound.2024.01.013
Qiu, Jiajia; Duan, Yu; Li, Shaoyuan; Zhao, Huaping; Ma, Wenhui; Shi, Weidong; Lei, Yong
Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. - In: Nano-Micro letters, ISSN 2150-5551, Bd. 16 (2024), 1, 130, S. 1-44

Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.



https://doi.org/10.1007/s40820-024-01341-4
Shekhawat, Deepshikha; Sulman, Muhammad; Breiter, Manuela; Pezoldt, Jörg
Controlling reaction transfer between Al/Ni reactive multilayer elements on substrates. - In: MRS advances, ISSN 2059-8521, Bd. 0 (2024), 0, S. 1-6

Reactive multilayers produce exothermic reaction with definite velocity and maximum temperature after ignition, which are the fundamental properties of the reactive multilayer systems. The generated heat with certain velocity makes it widely used in joining, bonding in the packaging, thermal batteries and many more applications. In this work, a distinct approach for achieving a reaction transfer between the reactive multilayers and different materials is demonstrated which can affect the generated temperature and velocity from the self-propagating properties of the reaction. For these intensions, we fabricated the Al/Ni reactive elements with certain separations between elements which allow to observe the reaction front transfer and emitted temperature in the reaction chain. The created separation between reactive elements are periodical and ordered systems with different thermal conductive properties. The temperature and definite velocity were measured by time-resolved pyrometer and high-speed camera measurements. SEM analysis showed the characteristics of the reaction transfer between reactive multilayer elements. It is predicted that: (I) The reaction front stops at a space with critical length; (II) Reducing heat loss through the substrate supports reaction front propagation through spaces; (III) Thermal property design of the spaces between the reactive elements enables property modification of the self-propagating reaction.



https://doi.org/10.1557/s43580-024-00804-5
Schuler, Ramona; Langer, Andreas; Marquardt, Christoph; Kalev, Georgi; Meisinger, Maximilian; Bandura, Julia; Schiedeck, Thomas; Goos, Matthias; Vette, Albert; Konschake, Marko
Automatic muscle impedance and nerve analyzer (AMINA) as a novel approach for classifying bioimpedance signals in intraoperative pelvic neuromonitoring. - In: Scientific reports, ISSN 2045-2322, Bd. 14 (2024), 654, S. 1-15

Frequent complications arising from low anterior resections include urinary and fecal incontinence, as well as sexual disorders, which are commonly associated with damage to the pelvic autonomic nerves during surgery. To assist the surgeon in preserving pelvic autonomic nerves, a novel approach for intraoperative pelvic neuromonitoring was investigated that is based on impedance measurements of the innervated organs. The objective of this work was to develop an algorithm called AMINA to classify the bioimpedance signals, with the goal of facilitating signal interpretation for the surgeon. Thirty patients included in a clinical investigation underwent nerve-preserving robotic rectal surgery using intraoperative pelvic neuromonitoring. Contraction of the urinary bladder and/or rectum, triggered by direct stimulation of the innervating nerves, resulted in a change in tissue impedance signal, allowing the nerves to be identified and preserved. Impedance signal characteristics in the time domain and the time-frequency domain were calculated and classified to develop the AMINA. Stimulation-induced positive impedance changes were statistically significantly different from negative stimulation responses by the percent amplitude of impedance change Amax in the time domain. Positive impedance changes and artifacts were distinguished by classifying wavelet scales resulting from peak detection in the continuous wavelet transform scalogram, which allowed implementation of a decision tree underlying the AMINA. The sensitivity of the software-based signal evaluation by the AMINA was 96.3%, whereas its specificity was 91.2%. This approach streamlines and automates the interpretation of impedance signals during intraoperative pelvic neuromonitoring.



https://doi.org/10.1038/s41598-023-50504-7
Walther, Dominik; Junger, Christina; Schmidt, Leander; Schricker, Klaus; Notni, Gunther; Bergmann, Jean Pierre; Mäder, Patrick
Recurrent autoencoder for weld discontinuity prediction. - In: Journal of advanced joining processes, ISSN 2666-3309, Bd. 9 (2024), 100203, S. 1-12

Laser beam butt welding is often the technique of choice for a wide range of industrial tasks. To achieve high quality welds, manufacturers often rely on heavy and expensive clamping systems to limit the sheet movement during the welding process, which can affect quality. Jiggless welding offers a cost-effective and highly flexible alternative to common clamping systems. In laser butt welding, the process-induced joint gap has to be monitored in order to counteract the effect by means of an active position control of the sheet metal. Various studies have shown that sheet metal displacement can be detected using inductive probes, allowing the prediction of weld quality by ML-based data analysis. The probes are dependent on the sheet metal geometry and are limited in their applicability to complex geometric structures. Camera systems such as long-wave infrared (LWIR) cameras can instead be mounted directly behind the laser to overcome a geometry dependent limitation of the jiggles system. In this study we will propose a deep learning approach that utilizes LWIR camera recordings to predict the remaining welding process to enable an early detection of weld interruptions. Our approach reaches 93.33% accuracy for time-wise prediction of the point of failure during the weld.



https://doi.org/10.1016/j.jajp.2024.100203