Rothe, Anna; Entwicklung und Implementierung eines numerischen Verfahrens zur Lösung eines unvollständigen Anfangswertproblems mit Nebenbedingung. - Ilmenau. - 41 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2021
In der vorliegenden Arbeit wurde ein numerisches Verfahren entwickelt, um ein unvollständiges Anfangswertproblem mit Nebenbedingung zu lösen. Dieses wird durch die aus der Physik bekannte Boltzmanngleichung motiviert. Da man häufig nur an stationären, also zeitunabhängigen Lösungen in einer Raumdimension interessiert ist, genügt es die Gleichung im eindimensionalen Fall zu betrachten, wo sie durch ein Randwertproblem gegeben ist. In der Praxis wird das zeitabhängige Problem so lange numerisch gelöst, bis der asymptotisch stationäre Zustand erreicht ist. Da diese Methode sehr rechenintensiv ist, wurde in der vorliegenden Arbeit anhand eines einfachen Modells des Stoßoperators eine alternative Berechnungsmethode entwickelt. Hierbei wird ausgehend von einer bekannten Lösung eine Homotopiemethode in Verbindung mit einem einfachen Schießverfahren genutzt, um die stationäre Lösung zu erhalten. Die dafür benötigten Schritte wurden in Matlab implementiert. Abschließend wurden numerische Berechnungen durchgeführt, um zu sehen, wie sich verschiedene Störungen der Anfangswerte auf die Lösung des Problems auswirken.
Degenhardt, Laura; Entwurf eines Monte Carlo-Algorithmus zur numerischen Simulation von Gelationsphänomenen. - Ilmenau. - 86 Seiten
Technische Universität Ilmenau, Masterarbeit 2021
In der vorliegenden Masterarbeit wird ein Monte Carlo-Algorithmus zur numerischen Simulation von Gelationsphänomenen entworfen und getestet. Gelation beschreibt den Vorgang, bei dem Partikel endlicher Masse in endlicher Zeit zu Partikeln unendlicher Masse heranwachsen. Die Basis dafür bilden Koagulationsprozesse, welche mittels der Smoluchowski -Gleichung abgebildet werden. Beim Entwurf eines entsprechenden Algorithmus liegt die Schwierigkeit in der numerischen Erfassung der Gelation. Diese erfordert das Konzept einer geeigneten Schwelle, welche in der Arbeit entsprechend hergeleitet und eigeführt wird. Weiterhin werden Maßnahmen zur effizienten Gestaltung des Algorithmus vorgestellt und auf die Aussagekraft und Grenzen des Algorithmus eingegangen. Der Basisalgorithmus zur Simulation von Gelationsphänomenen wurde mittels Operatorensplitting erweitert. In diesem Zusammenhang werden Koagulationsprozesse unter Berücksichtigung von räumlicher Diffusion und deren Auswirkung auf das Gelationsverhalten des betrachteten Systems untersucht.
Bold, Lea; Numerische Untersuchungen zur Lösung der Boltzmann-Gleichung. - Ilmenau. - 54 Seiten
Technische Universität Ilmenau, Bachelorarbeit 2020
Diese Arbeit beschäftigt sich mit einem numerischen Verfahren zur Lösung der räumlich homogenen Boltzmann-Gleichung. Die Boltzmann-Gleichung ist eine mesoskopische Differentialgleichung der kinetischen Gastheorie, die Partikel in dünnen Gasen betrachtet. Um numerische Untersuchungen durchführen zu können, wird ein diskretes Geschwindigkeitsmodell mit einem zweidimensionalen 3 × 3-Gitter vorgestellt, auf welchem gearbeitet wird. Es werden drei verschiedene Modelle für Stoßoperatoren betrachtet, die in der Boltzmann-Gleichung verwendet werden können: den nichtlinearen allgemeinen, den linearisierten und den Bhatnagar-Gross-Krook (BGK) Stoßoperator. Die Lösung der Gleichung erfolgt durch ein Runge-Kutta-Verfahren. Dafür bestimmen wir Anfangsbedingungen, die durch eine Störung beeinflusst werden. Es gibt zwei verschiedene Typen von Störungen, eine, die orthogonal auf den Momentenvektoren des Modells steht und eine, die sich in dem Raum aufgespannt von den Momentenvektoren befindet. Insgesamt betrachten wir neun solche Störungen. Die Lösung der Boltzmann-Gleichung wird für jede der Anfangsstörungen berechnet und die Ergebnisse werden miteinander verglichen. Zuerst schauen wir uns für den nichtlinearen Stoßoperator an, wie die Störungen der Anfangsbedingung den Lösungsverlauf beeinflussen können. Anschließend vergleichen wir die Ergebnisse mit denen des linearisierten Stoßoperators und stellen fest, dass nur manche Ergebnisse mit dem BGK-Operator erreicht werden können.
Tischer, Mario; Modellierung eines Gasgemischs im hydrodynamischen Limes. - 51 Seiten
Technische Universität Ilmenau, Masterarbeit 2016
Verwendet man bei der Betrachtung des "Evaporation-Condensation-Problem" gängigen Methoden zur Analyse des Hydrodynamischen Limes, so erhält man ein als""Ghost-Effect" bezeichnet, physisch unmögliches Ergebnis. In einer Arbeit von Prof. Babovsky wurde stattdessen die Diffuse Skalierung verwendet, bei welcher der "Ghost-Effect" nicht auftrat. In meiner Arbeit wurde die Diffuse Skalierung auf ein bestimmtes Diskretes Geschwindigkeitsmodell (den Broadwell-Model) angewandt, um dieses Ergebnis anhand eines konkreten Beispieles zu verifizieren.
Gruschwitz, Michael; Attraktordimensionen zeitdiskreter dynamischer Systeme: Grundlagen und numerische Verfahren. - 146 S. : Ilmenau, Techn. Univ., Diplomarbeit, 2015
Bei dissipativen dynamischen Systemen ist - insbesondere im Rahmen der Modellbildung - meist das Langzeitverhalten, und damit der sogenannte Attraktor des dynamischen Systems von besonderem Interesse. Eine wichtige Eigenschaft des Attraktors ist dabei dessen Dimension. Zum einen kann die Dimension des Attraktors einen Anhaltspunkt für die Art des vorliegenden dynamischen Systems geben: ganzzahlige Dimensionswerte deuten auf reguläre, nicht ganzzahlige Dimensionswerte hingegen auf chaotische dynamische Systeme hin. Darüber hinaus kann die Dimension des Attaktors beispielsweise bei der Modellbildung einen Anhaltspunkt für die Anzahl der benötigten unabhängigen Variablen liefern. Die vorliegende Arbeit beschäftigt sich daher mit den Möglichkeiten die Dimension eines (diskreten) dissipativen dynamischen Systems numerisch zu bestimmen. Ausgehend von einer Zusammenfassung der wichtigsten mathematischen Grundlagen und einer kurzen Einführung in die Begriffe der dynamischen Systeme, werden die verschiedenen, in der Literatur gängigen Dimensionsbegriffe einheitlich motiviert und dargelegt. Nach einer Bewertung der numerischen Bestimmbarkeit der unterschiedlichen Dimensionsbegriffe werden für die am geeignetsten erscheinenden Dimensionsbegriffe - Lyapunov-Dimension und Korrelationsdimension - Algorithmen motiviert und dargestellt sowie diese Algorithmen an Beispielen getestet. Abschließend werden die erhaltenen Resultate bzgl. der Genauigkeit der Resultate und der dafür benötigten Laufzeiten miteinander verglichen.
Fechner, Felix; Numerische Simulation der makroskopischen Lasergleichungen. - 34 S. : Ilmenau, Techn. Univ., Bachelor-Arbeit, 2014
Ziel dieser Arbeit ist die Analyse des Einflusses diverser Parameter auf die makroskopischen Lasergleichungen. Hierzu bedarf es einer numerischen Beschreibung und einer programmiertechnischen Umsetzung, welche ebenfalls durchgeführt werden sollen. Um ein Verständnis sowohl der physikalischen als auch der mathematisch-numerischen Grundlagen zu gewährleisten, werden beide detailliert vorgestellt. Zunächst soll hierbei die semiklassische Theorie des Laserlichts wiedergegeben werden, welche die Maxwellsche Theorie des Elektromagnetismus mit einem quantenmechanischen Zweiniveausystem verbindet. Dies führt letztlich auf drei gekoppelte Differentialgleichungen, welche die physikalischen Größen elektrische Feldstärke, Polarisation und Besetzungsinversion miteinander verknüpfen. Direkt anschließend wird die numerische Theorie der gewöhnlichen und partiellen Differentialgleichungen ausgearbeitet. Hierbei werden im Rahmen der gewöhnlichen Differentialgleichungen zunächst verschiedene Einschrittverfahren und darauf folgend explizite und implizite Mehrschrittverfahren vorgestellt. Die numerische Theorie der partiellen Differentialgleichungen beschränkt sich auf die Methode der finiten Differenzen, wobei explizite, implizite und gemischte Verfahren an den Beispielen der Wellen- und der Diffusionsgleichung vorgestellt werden. Zudem werden die theoretischen Konzepte der Stabilitätsuntersuchung sowie verschiedene Stabilitätskriterien angegeben. Darauf aufbauend wird die numerische Umsetzung der Lasergleichungen beschrieben. Es wird darauf Wert gelegt, die Herangehens- und Arbeitsweise des Autors aufzuzeigen, um somit ein einfacheres Nachvollziehen der Gedankengänge zu ermöglichen. Aus diesem Grund wird zunächst die physikalische Vorbereitung - das Reskalieren der Gleichungen behandelt. Dies ermöglicht eine einheitenlose und somit mathematisch-numerisch stark vereinfachte Handhabung der Gleichung. Anschließend folgt die numerische Stabilitätsuntersuchung verschiedener Verfahren, angewandt auf die zunächst noch entkoppelt partielle Lasergleichung. Diese Untersuchung soll ebenfalls die Arbeitsweise des Autors in den Vordergrund rücken und wird deshalb nicht in der strengen mathematischen Beweisstruktur wiedergegeben. Vielmehr werden die Stabilitätsbedingungen - der formalen Beweisrichtung entgegengesetzt - hergeleitet, wodurch die Nachvollziehbarkeit und der Lesefluss erhöht werden. Nach der physikalischen Interpretation der Werte der entkoppelten Gleichung werden abschließend die drei gekoppelten Gleichungen computertechnisch umgesetzt. Von den mannigfaltigen untersuchenswerten Phänomenen werden einerseits ein assymetrisches Auftreten der Besetzungsinversion und andererseits die Abhängigkeit des Laserprozesses von Dämpfungstermen untersucht.
Büttner, Florian; Ein implizites parallelisierbares Runge-Kutta-Verfahren. - 53 S. : Ilmenau, Techn. Univ., Bachelor-Arbeit, 2012
Das Ergebnis der Bachelorarbeit mit dem Thema: "Ein implizites parallelisierbares Runge-Kutta-Verfahren" ist das Auffinden eines problemspezifischen implizites Runge-Kutta-Verfahrens der Konsistenzordnung 2, welches die Eigenschaft der A-Stabilität erfüllt. Zunächst wird im ersten Kapitel ein kurzer Überblick über die Theorie der gewöhnlichen Differentialgleichungen gegeben. Anschließend wird auf die Grundlagen der Numerik gewöhnlicher Differentialgleichungen eingegangen, verschiedene implizite Runge-Kutta-Verfahren vorgestellt und deren Stabilitätseigenschaften beschrieben. Im fünften Kapitel werden Verfahren zur numerischen Lösung von Gleichungenssystemen vorgestellt, um somit die Gleichungen, welche bei der Berechnung der impliziten Runge-Kutta-Verfahren auftreten, zu berechnen. Das nächste Kapitel beschäftigt sich mit der Konstruktion des Runge-Kutta-Verfahrens und des Algorithmus zur Lösung eines Anfangwertproblems. Ferner wurden die Stabilitätseigenschaften des Verfahrens untersucht. Hierbei hat sich herausgestellt, dass das konstruierte Verfahren A-stabil, AN-stabil, B-stabil und algebraisch stabil ist. Allerdings sind die Voraussetzungen der starken A-Stabilität und der L-Stabilität nicht erfüllt. Anschließend wurde der Algorithmus an einem einfachen Testproblem, sowie an einer Variante des Broadwell-Modells überprüft. Im letzten Kapitel wurde mit einem adaptiven Verfahren noch eine Möglichkeit angegeben, den lokalen Diskretisierungsfehler mithilfe eines Kontrollverfahrens abschätzen zu können. Die im Unterkapitel 5.3 angegebenen Eigenschaften der Funktion J stimmen mit denen des Kollisionsoperators des allgemeinen diskreten Geschwindigkeitsmodells überein, wobei dieser parallel ausgewertet wird. Aus diesem Grund eignet sich der Algorithmus zur numerischen Lösung der Standardform des diskreten, linearisierten Geschwindigkeitsmodells der Boltzmanngleichung. Aufgrund der Stabilitätseigenschaften des impliziten Runge-Kutta-Verfahrens, lässt dieses Verfahren eine größere Schrittweite zur Berechnung der Lösung zu. Dies führt letztendlich zu einer schnelleren Berechnung der Differentialgleichungen bzw. bietet es die Möglichkeit bei komplexeren Modellen überhaupt zu einer Lösung zu gelangen.
Brechtken, Stefan;
Modellierung der Boltzmanngleichung auf diskreten Geschwindigkeitsgittern, numerische Umsetzung und Parallelisierung mithilfe von CUDA. - 116 S. : Ilmenau, Techn. Univ., Masterarbeit, 2010
Im ersten Teil dieser Arbeit wurden die wichtigsten Eigenschaften der Boltzmanngleichung zusammengetragen. Daraufhin wurde die Boltzmanngleichung auf einem diskreten Geschwindigkeitsgitter modelliert und gezeigt, dass die modellierte Gleichung die gleichen Eigenschaften besitzt wie die originale Gleichung. In der zweiten Hälfte entwickelten wir einfache Algorithmen um die modellierte (diskrete) Boltzmanngleichung numerisch zu lösen. Diese Algorithmen wurden in C++ zur Berechnung auf einem CPU und parallelisiert in CUDA zur Berechnung auf einem GPU umgesetzt. Abschließend wurden einige Modellprobleme numerisch mithilfe der beiden Implementierungen gelöst und überprüft, ob eine parallelisierte Implementierung dieses Problems auf einem GPU sinnvoll ist.
Kaufmann, Julia; Iterationen hoher Ordnung - von Newton bis zur Gegenwart. - 50 S. : Ilmenau, Techn. Univ., Bachelor-Arbeit, 2009
In dieser Arbeit geht es um die näherungsweise Bestimmung von nichtlinearen skalaren Gleichungen mit festem Parameterwert a. Es wurde untersucht, ob die quadratische Konvergenz des Newtonverfahrens auf eine beliebig hohe Konvergenzordnung ausgeweitet werden kann. Dies wurde an einigen Beispielen in Maple untersucht.