Veröffentlichungen

Anzahl der Treffer: 22
Erstellt: Wed, 08 May 2024 23:08:24 +0200 in 0.1886 sec


Fröhlich, Thomas; Kissinger, Thomas; Manske, Eberhard
Process measurement technology and precision measurement technology :
Prozessmesstechnik und Präzisionsmesstechnik. - In: Technisches Messen, ISSN 2196-7113, Bd. 91 (2024), 5, S. 231-232
Editorial

https://doi.org/10.1515/teme-2024-0041
Barioul, Rim; Ben Atitallah, Bilel; Kissinger, Thomas; Kanoun, Olfa
Synergy of nanocomposite force myography and optical fiber-based wrist angle sensing for ambiguous sign classification. - In: Engineering for a changing world, (2023), 5.2.142, S. 1-2

This paper aims at understanding the capabilities and limitation of combining Nanocomposite Force myography sensors (FMG) and optical fiber sensors in standalone systems and their synergy influence on the classification of ambiguous hand gestures. A set of 10 highly similar hand signs from the fingerspelling of the American sign language is adopted in this study. Force myography (FMG) signals are collected from one healthy subject performing the selected set of gestures with 40 repetitions for each gesture. The K-Tournament Grasshopper Extreme Learner (KTGEL) classifier has been implemented to perform an automated feature selection and hand sign classification with an efficient network size and a high accuracy.



https://doi.org/10.22032/dbt.58941
Shmagun, Vitalii; Gerhardt, Uwe; Manske, Eberhard; Fröhlich, Thomas; Kissinger, Thomas
Resolution enhancement in Fabry-Perot interferometers through evaluation of multiple reflection using range-resolved interferometry. - In: Engineering for a changing world, (2023), 1.1.104, S. 1-8

This work presents a novel approach for improving interferometer resolution with a relatively simple setup by combining the use of range-resolved interferometry and a high-finesse Fabry-Perot setup utilizing multiple reflections in the cavity to gradually increase the resolution. This approach could enable the measurement of small displacements with a potentially much higher resolution than current interferometry methods. A simple proof-of concept setup demonstrated the evaluation of up to four Fabry-Perot passes, while theoretically much higher sensitivity improvement factors should be possible.



https://doi.org/10.22032/dbt.58695
Fischer Calderón, Sebastian J.; Straube, Guido; Kissinger, Thomas
A novel point-to-point length measurement concept based on range-resolved interferometry. - In: Engineering for a changing world, (2023), 1.1.099, S. 1-6

In many fields of research and high-value industry, the estimation of distances and displacements is crucial. Due to their extremely high spatial resolution and flexible application possibilities interferometers are cross-sectorally used in measurement practice. However, classical length measuring interferometers are subject to two residual restrictions. On the one hand, only displacements that are exactly aligned to the interferometer optical axis can be measured. On the other hand, deviating refractive indices in the measuring and reference arm due to different atmospheric conditions represent an accuracy-limiting disturbance. In this paper, a new interferometric concept for length measurement is presented. The concept is based on the range-resolved interferometry technology which enables the simultaneous readout and evaluation of two symmetrical interferometric signals which result from the superposition of two non-collimated spherical wavefronts. This allows a point-to-point measurement between two optical fiber ends and the separation of undesired changes of the optical path length outside the measurement cavity and within the measurement cavity.



https://doi.org/10.22032/dbt.58680
Wiseman, Kieran B.; Kissinger, Thomas; Tatam, Ralph P.
Long-term wavelength stabilisation of widely modulated lasers. - In: Optical Measurement Systems for Industrial Inspection XIII, (2023), 1261816, S. 1261816-1-1261816-8

In this paper, we present a novel technique for stabilisation of widely wavelength modulated lasers (>100pm) over long time scales, where modulation depths exceed the spectral width of standard reference features, such as gas absorption lines, by over an order of magnitude. The technique operates by controlling the temporal separation between successive appearances of a gas absorption line on the up and down sweeps of a sinusoidal laser wavelength modulation waveform. The influence of the signal distortions introduced by the laser intensity modulation that are associated with laser diode injection current modulation are also addressed. The technique is applied to a range-resolved interferometric system interrogating a Mach-Zehnder interferometer operating in thermally stable conditions, using an absorption feature from a fibre-coupled gas cell as a reference. Proof-of-principle measurement results achieved using this technique are presented, demonstrating a notional fractional stability of 3.9×10−7 without further correction.



https://doi.org/10.1117/12.2673684
Pillai, Sivaji; Charrett, Thomas O. H.; Kissinger, Thomas; James, Stephen W.; Tatam, Ralph P.
A fibre optic angle sensing tape for applications in robotics and automation. - In: Optical Measurement Systems for Industrial Inspection XIII, (2023), 126180D, S. 126180D-1-126180D-6

A dual-fibre single-plane angle-sensing tape that utilizes optical Fibre Segment Interferometry and Range- Resolved Interferometry (RRI) for angle sensing is presented. The sensing tape facilitates the multiplexing of an array of angle sensors along its length and can be retrofitted into small robots and construction equipment. We demonstrate its application on three non-rotational joints of a small five-axis robot, describing the design, construction, measurement principle, and presenting measurement results. Preliminary data shows that the angles measured by the sensing tape exhibited agreement within a range of ±0.005˚ with the manufacturer-installed angle encoder of the robot.



https://doi.org/10.1117/12.2673185
Shmagun, Vitalii; Vasilyan, Suren; Rogge, Norbert; Fröhlich, Thomas; Kissinger, Thomas
Comparison of fiber interferometric sensor with a commercial interferometer for a Kibble balance velocity calibration. - In: Measurement science and technology, ISSN 1361-6501, Bd. 34 (2023), 12, 125017, S. 1-10

This article presents a fiber interferometric sensor (FIS) for measuring the velocity amplitude of an oscillatory vibrating object, with a focus on velocity mode measurement in applications using the Kibble balance principle. The sensor uses the range-resolved interferometry method to measure the displacement of the moving object and employs a multi-harmonic sine-fit algorithm to estimate the displacement amplitude and frequency, thereby determining the velocity amplitude. This article provides a comprehensive explanation of the experimental setup and the measurement techniques employed, as well as a detailed analysis of the uncertainty budget, with the performance validation of the FIS benchmarked against a commercial interferometer within a Kibble balance setup. The velocity amplitude of a coil of the Kibble balance, oscillating with an approx. amplitude of 20 μm and a frequency of 0.25 Hz, was measured using the sensor and found to be 31.282 31 μm s^−1 with a relative deviation of −1.9 ppm compared to a commercial interferometer. The high performance of the FIS, especially with regard to non-linearity errors, and the small size of the measuring head enable universality of integration into a wide variety of measurement systems, also including the use as general-purpose vibration and displacement sensor.



https://doi.org/10.1088/1361-6501/acf2b7
Shmagun, Vitalii; Kissinger, Thomas; Fröhlich, Thomas
Fiber-interferometric sensor for velocity measurement in the Planck-Balance. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 127-128

This work describes the use of a compact fiber-interferometric sensor for velocity measurements for the Kibble balance method. Our fiber-interferometric sensor was compared within a Planck-balance setup with a commercial reference interferometer. Results show that the fiber-interferometric sensor is capable of high accuracy velocity measurement comparable with the reference interferometer. High performance and compactness of the sensor head allow it to be integrated into small-size systems, where the use of the conventional interferometer systems is limited or not possible.



https://doi.org/10.5162/SMSI2023/B6.2
Kissinger, Thomas;
Multiplexing interferometers to provide novel capabilities for nanometrology. - In: SMSI 2023 Conference - Sensor and Measurement Science International, (2023), S. 239-240

Multiplexing interferometers within a single beam, based on their optical path difference, using laser wavelength-modulated signal processing techniques such as the range-resolved interferometry method, allows for interesting new capabilities in precision interferometry. For example, these include single-beam differential interferometry or position encoders with multiple degrees-of-freedoms using only a single fibre-coupled access port.



https://doi.org/10.5162/SMSI2023/D6.1
Barrington, James H.; James, Stephen W.; Kissinger, Thomas; Staines, Stephen E.; Prince, Simon; Alucsa-Saeza, Erica; Lawson, Nicholas J.; Tatam, Ralph P.
The use of range-resolved interferometry for multi-parameter sensing in a wind tunnel. - In: European Workshop on Optical Fibre Sensors (EWOFS 2023), (2023), 1264303, S. 1264303-1-1264303-4

The work presented demonstrates that key parameters in aerodynamic structural characterisation of pressure, strain, and structural dynamics, can be all measured via optical fibre sensors interrogated using the principles of range-resolved interferometry (RRI). When used to interrogate sensors simultaneously deployed on a high lift wind in a wind tunnel, the approach yielded resolutions of 31 μPa/ &worte; Hz and 1 nε/ &worte; Hz at a bandwidth of 1526 Hz for pressure and strain, respectively, demonstrating the accuracy and versatility of the RRI signal processing technique.



https://doi.org/10.1117/12.2679414
Stricklin, Isaac; Gotszalk, Teodor; Behzadirad, Mahmoud; Manske, Eberhard; Kissinger, Thomas; Rangelow, Ivo W.; Busani, Tito L.
Multipurpose active scanning probe cantilevers for near-field spectroscopy, scanning tunnel imaging, and atomic-resolution lithography. - In: Journal of vacuum science & technology, ISSN 2166-2754, Bd. 41 (2023), 4, S. 042601-1-042601-9

In this work, we report progress on developing a multipurpose scanning probe cantilever applying gallium nitride nanowires as the probe tip. Gallium nitride nanowires possess high potential as probes due to their straight profile, tunable electrical and optical properties, high Young’s Modulus, durability, and high-yield fabrication process. Their wide bandgap enables them to be pumped to emit ultraviolet pulses which can be used for optical imaging and spectroscopy. They can be doped during growth to be electrically conductive, and their sharp tips obtained during epitaxial growth enable confinement of a high electric field at tip-sample interface. Their sharp tips are obtained during fabrication by their epitaxial growth which eliminates the need for postprocess sharpening that is typically required for standard STM tips. We present results of using gallium nitride nanowires for scanning tunnel microscopy applications of atomic-resolution imaging and lithography, and atomic force microscopy applications of imaging and lithography in vacuum and atmospheric environments.



https://doi.org/10.1116/6.0002486
Manske, Eberhard; Blumröder, Ulrike; Köchert, Paul; Fröhlich, Thomas; Kissinger, Thomas; Ortlepp, Ingo; Gerhardt, Uwe; Mastylo, Rostyslav
Permanent tracebility of a nanopositioning and nanomeasuring machine. - In: 2023 ASPE Winter Topical Meeting: Precision Optical Metrology Workshop, (2023), S. 82-86

Due to the frequency stabilization of He-Ne-lasers directly to a frequency comb controlled by a GPS atomic clock disciplined oscillator and their direct coupling with a Nanopositioning and Nanomeasuring Machine, directly traceable measurements are demonstrated.



Barrington, James H.; James, Stephen W.; Kissinger, Thomas; Staines, Stephen E.; Prince, Simon; Alcusa-Saez, Erica; Lawson, Nicholas J.; Tatam, Ralph P.
Optical fibre pressure sensing using a frequency modulated laser-based signal processing technique. - In: Measurement science and technology, ISSN 1361-6501, Bd. 34 (2023), 7, 075202, S. 1-12

Range resolved interferometry (RRI) applied to the interrogation of an extrinsic Fabry-Perot based pressure sensor in laboratory and wind tunnel environments is presented. A simple, compact sensor head design was fabricated and subsequently characterised using RRI, which was shown to have a sensitivity of 1.627×10^-3 rad Pa^-1 with a noise standard deviation of 9 Pa over a data rate of 1.5 kHz. When installed in a high-lift wing for surface pressure evaluation during wind tunnel testing, the approach outlined here was able to perform as well as a conventionally employed commercial device for relative static pressure measurements.



https://doi.org/10.1088/1361-6501/accaff
Blumröder, Ulrike; Köchert, Paul; Fröhlich, Thomas; Kissinger, Thomas; Ortlepp, Ingo; Flügge, Jens; Bosse, Harald; Manske, Eberhard
A GPS-referenced wavelength standard for high-precision displacement interferometry at λ = 633 nm. - In: Sensors, ISSN 1424-8220, Bd. 23 (2023), 3, 1734, S. 1-24

Since the turn of the millennium, the development and commercial availability of optical frequency combs has led to a steadily increase of worldwide installed frequency combs and a growing interest in using them for industrial-related metrology applications. Especially, GPS-referenced frequency combs often serve as a "self-calibrating" length standard for laser wavelength calibration in many national metrology institutes with uncertainties better than u = 1 × 10^-11. In this contribution, the application of a He-Ne laser source permanently disciplined to a GPS-referenced frequency comb for the interferometric measurements in a nanopositioning machine with a measuring volume of 200 mm × 200 mm × 25 mm (NPMM-200) is discussed. For this purpose, the frequency stability of the GPS-referenced comb is characterized by heterodyning with a diode laser referenced to an ultrastable cavity. Based on this comparison, an uncertainty of u = 9.2 × 10^-12 (τ = 8 s, k = 2) for the GPS-referenced comb has been obtained. By stabilizing a tunable He-Ne source to a single comb line, the long-term frequency stability of the comb is transferred onto our gas lasers increasing their long-term stability by three orders of magnitude. Second, short-term fluctuations-related length measurement errors were reduced to a value that falls below the nominal resolving capabilities of our interferometers (ΔL/L = 2.9 × 10^-11). Both measures make the influence of frequency distortions on the interferometric length measurement within the NPMM-200 negligible. Furthermore, this approach establishes a permanent link of interferometric length measurements to an atomic clock.



https://doi.org/10.3390/s23031734
Kissinger, Thomas; James, Stephen W.; Tatam, Ralph P.
Recent progress on fibre optic shape sensing for aerodynamic applications. - In: Experimentelle Strömungsmechanik - 29. Fachtagung, 6.-8. September 2022, Ilmenau, (2022), 21

Shmagun, Vitalii; Gerhardt, Uwe; Fröhlich, Thomas; Manske, Eberhard; Kissinger, Thomas
Absolute distance measurements for in-situ interferometer characterisation using range-resolved interferometry. - In: Measurement science and technology, ISSN 1361-6501, Bd. 33 (2022), 12, 125024, S. 1-12

Range-resolved interferometry (RRI) allows the simultaneous demodulation of multiple interferometric signal sources and provides a tomographic view of all constituent interferometers that may be present in a setup. Through comparison with a reference distance of known length, absolute distance measurements can be performed. RRI is tailored to the use of laser frequency modulation through injection-current modulation of regular, monolithic laser diodes that are both cost-effective and highly coherent and therefore this approach promises broad applicability. In this paper, two methods for absolute distance measurement, one based on the direct evaluation of the signal peak positions and one based on the phase demodulation of an additional lock-in modulation signal, are experimentally demonstrated. Using an external verification displacement interferometer, both techniques are shown to achieve in-situ absolute distance measurements with systematic errors below over a 50 mm travel range. The aim of this paper is to establish the general suitability of RRI for absolute distance measurements and in-situ tomographic interferometer characterisation for precision engineering. In future, this approach could be used to diagnose interferometric setups for parasitic signal contributions, multiple reflections or to determine the dead path length for accurate environmental compensation, either for use during initial setup of, or for continuous operation alongside, a regular displacement measuring interferometer.



https://doi.org/10.1088/1361-6501/ac970a
James, Stephen W.; Kissinger, Thomas; Weber, Simone; Mullaney, Kevin; Chehura, Edmond; Pekmezci, Huseyin H.; Barrington, James H.; Staines, Stephen E.; Charrett, Thomas O. H.; Lawson, Nicholas J.; Lone, Mudassir; Atack, Richard; Tatam, Ralph P.
Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: 1. Measurement of strain. - In: Smart materials and structures, ISSN 1361-665X, Bd. 31 (2022), 7, 075014, S. 1-13

https://doi.org/10.1088/1361-665X/ac736d
Kissinger, Thomas; James, Stephen W.; Weber, Simone; Mullaney, Kevin; Chehura, Edmond; Pekmezci, Huseyin H.; Barrington, James H.; Staines, Stephen E.; Charrett, Thomas O. H.; Lawson, Nicholas J.; Lone, Mudassir; Atack, Richard; Tatam, Ralph P.
Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: 2. Measurement of shape. - In: Smart materials and structures, ISSN 1361-665X, Bd. 31 (2022), 7, 075015, S. 1-13

https://doi.org/10.1088/1361-665X/ac736c
Hallam, Jonathan Mark; Kissinger, Thomas; Charrett, Thomas; Tatam, Ralph P.
In-process range-resolved interferometric (RRI) 3d layer height measurements for wire + arc additive manufacturing (WAAM). - In: Measurement science and technology, ISSN 1361-6501, Bd. 33 (2022), 4, 044002, S. 1-12

In this work a range resolved interferometry (RRI) instrument for absolute distance measurements is integrated into a wire + arc additive manufacturing (WAAM) system to provide in-process monitoring of layer height, and prospects for volume and profile monitoring are discussed. Interferometry as a coherent optical technique offers a straightforward in-process measurement even in the harsh welding environment, as compared to non-coherent techniques based either on laser profiling or camera vision systems. RRI can be accomplished at significantly lower cost, and with higher depth of field (up to 10s of cm) than existing optical coherence tomography based weld monitoring. In this experiment titanium feedstock was used to create a 150mm long, 13.5mm high weld-wall comprised of 11 welded layers. The RRI in-process measurements are in very good agreement with both mid-process, on-machine micrometer measurements taken by hand after each weld, and post-process laser scanning measurements of the completed wall. The high depth of field allows direct referencing of the layer height measurements to the build plate making the measurement independent of the motion system and build plate bending, considerably lowering uncertainties. This, together with the capability for cost-effective in-process measurements in harsh environments, should make the proposed approach very interesting for routine use in WAAM systems.



https://doi.org/10.1088/1361-6501/ac440e
Bridges, Angus; Yacoot, Andrew; Kissinger, Thomas; Tatam, Ralph P.
Multiple intensity reference interferometry for the correction of sub-fringe displacement non-linearities. - In: Measurement science and technology, ISSN 1361-6501, Bd. 33 (2022), 2, 025201, S. 1-12

Displacement measuring interferometers, commonly employed for traceable measurements at the nanoscale, suffer from non-linearities in the measured displacement that limit the achievable measurement uncertainty for microscopic displacements. Two closely related novel non-linearity correction methodologies are presented here that allow for the correction of non-linearities in cases where the displacement covers much less than a full optical fringe. Both corrections have been shown, under ideal conditions, to be capable of reducing all residual non-linearity harmonics to below the 10 pm level.



https://doi.org/10.1088/1361-6501/ac3aad
Weber, Simone; Kissinger, Thomas; Chehura, Edmond; Staines, Stephen; Barrington, James; Mullaney, Kevin; Fragonara, Luca Zanotti; Petrunin, Ivan; James, Stephen; Lone, Mudassir; Tatam, Ralph
Application of fibre optic sensing systems to measure rotor blade structural dynamics. - In: Mechanical systems and signal processing, ISSN 1096-1216, Bd. 158 (2021), 107758, insges. 17 S.

This paper compares two fibre optic sensing techniques for vibration characterisation: (a) optical fibre Bragg grating (FBG) strain gauges and (b) a novel direct fibre optic shape sensing (DFOSS) approach based on differential interferometric strain measurements between multiple fibres within the same fibre arrangement. Operational mode shapes and frequency measurements of an Airbus Helicopters H135 bearingless main rotor blade (5.1 m radius) were acquired during a series of ground vibration tests undertaken in a controlled laboratory environment. Data recorded by the fibre optic instrumentation systems were validated using commercially available accelerometers and compared against a baseline finite element model. Both fibre optic sensing systems proved capable of identifying the natural frequencies of the blade in the frequency range of interest (0-100 Hz). The data from the FBG sensors exhibited a dependency on their position relative to the neutral axes of the blade, which meant that full characterisation of the flapping and lagging modes required careful consideration of sensor location in the chordwise direction. The DFOSS system was able to identify all structural dynamics, despite being located on the neutral axis in the lagging direction, due to its sensitivity to angle changes, rather than strain, and its biaxial measurement capability. The DFOSS system also allowed the operational mode shapes of the blade to be determined directly, without the requirement for strain transfer from the blade to the sensor and without the requirement for a model of the underlying structure. The accuracy of obtained natural frequencies and operational mode shapes is assessed, demonstrating the potential of the use of both fibre optic sensing systems for determining blade structural dynamics.



https://doi.org/10.1016/j.ymssp.2021.107758
Bridges, Angus; Yacoot, Andrew; Kissinger, Thomas; Humphreys, David A.; Tatam, Ralph P.
Correction of periodic displacement non-linearities by two-wavelength interferometry. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 12, 125202, S. 1-12

Non-linearities in interferometric displacement measurements commonly affect both homodyne and heterodyne optical interferometers. Unwanted back reflections (ghost reflections) or polarisation leakage introduce non-linearity terms at harmonics of the illuminating wavelength that cannot be fully corrected for with standard non-linearity correction techniques. A two-wavelength interferometric approach, operating at 632.8 and 785 nm, is presented here that is capable of correcting such non-linearities. Non-linearities are separated from the difference between two displacement measurements made at differing wavelengths with a Fourier approach. Compared to a standard Heydemann ellipse fitting correction, the proposed approach reduces estimated residual non-linearities from 84 to 11 pm in the case of a linear displacement profile. In particular this approach is applicable to the correction of higher order non-linearities that are caused by multiple reflections, and that are therefore very sensitive to alignment conditions.



https://doi.org/10.1088/1361-6501/ac1dfa