Master-/Diplomarbeiten

Anzahl der Treffer: 577
Erstellt: Sat, 18 May 2024 23:04:11 +0200 in 0.0959 sec


Sagar, Neha;
System modelling and validation of MEMS accelerometer. - Ilmenau. - 58 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Die Systemmodellierung ist der übliche erste Ansatz in jedem Produktentwicklungszyklus. Er beginnt mit der Auswahl des Konzepts und der Überprüfung des Konzepts durch Simulationen. Das eigentliche Produkt wird auf der Grundlage des Konzepts entworfen. Das Produkt, in diesem Fall der Sensor, wird dann anhand von Simulationen validiert. Theoretisch muss sich das Produkt genauso verhalten wie das Modell. Mit der zunehmenden Komplexität und Leistung von Sensoren werden jedoch selbst nach der Verifizierung und Validierung des Sensorsystemmodells anhand aller möglichen Anwendungsfälle und Eingaben einige Messergebnisse mit dem tatsächlichen Produkt fragwürdig. Der Grund dafür könnte eine unzureichende Systemvalidierung oder ein Mangel an Simulationsdaten sein, mit denen die Messungen verglichen werden können, oder der Sensor könnte problematisch sein. Außerdem sind die meisten Labormessungen teuer und zeitaufwändig, da sie wiederholt werden müssen. Die Handhabung der Sensoren ist mit zunehmender Miniaturisierung der Sensoren extrem mühsam. Darüber hinaus wird ein erheblicher Teil der Zeit für die Charakterisierung und Auswertung der Testergebnisse aufgewendet, um die Leistungsparameter des Sensors zu ermitteln. Daher ist es hilfreich, Informationen darüber zu haben, ob das Ergebnis eines Tests eine Analyse wert ist. Diese Arbeit befasst sich erstens mit der Validierung des Systemmodells und zweitens mit der Verbesserung der Arbeitsmethodik durch den Vergleich der Simulations- und Messdaten, die beide Zeitreihen sind. Es wird eine Einführung in die Modellierung von MEMS (mikroelektromechanische Struktur) und Sensorausleseschaltungen gegeben. Zunächst wurde das Modell des Sensorsystems untersucht und modifiziert, um verschiedene Rauschquellen zu berücksichtigen. Anschließend wurden die Änderungen anhand von Messungen validiert. Zweitens wurde ein MATLAB-Skript zum Vergleich von Messung und Simulation durch Merkmalsextraktion implementiert. Ein Vergleich konnte für verschiedene Leistungsparameter durchgeführt werden. Als Beispiel wurde für den Nachweis des Konzepts der Diplomarbeit das Rauschverhalten des Sensors gewählt. Das Validierungsergebnis zeigte, dass das Modell im Hinblick auf das Rauschen noch verbessert werden kann. Einige der aus beiden Daten extrahierten Merkmale wiesen Ähnlichkeiten auf.



Werner, Johannes Maximilian Konrad;
Bewertung der werkstofflichen Gefährdung relevanter Komponenten von Verbrennungsmotoren durch Wasserstoffversprödung und Heißdampfkorrosion. - Ilmenau. - 76 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Diese Arbeit beschäftigt sich mit den Auswirkungen von Wasserstoff auf den Vergütungsstahl 42CrMo4, sowie der Neigung eines Abgaskrümmers aus hochlegierten, austenitischen Stahl zur Heißdampfkorrosion. Darüber hinaus fasst diese Arbeit den Stand der Technik zu den verschiedenen Theorien der Wasserstoffversprödung zusammen und erklärt die Auswertemethode für Dauerfestigkeitsversuche nach dem Treppenstufenverfahren nach Hück und DIN EN 50100. Außerdem wird eine Möglichkeit gezeigt, die wirkenden Kerbspan- nungen in einem gekerbten Flachstab zu berechnen. Die Probenkörper wurden zwischen einer und 24 Stunden in 0,5 molarer Natronlauge mit 45 mA/cm^2 elektrochemisch beladen. Bei der Auswertung konnte ein leichter Abfall in der Steigung der Zeitfestigkeitsgeraden mit zunehmender Beladungszeit festgestellt werden. Dieser Abfall deckt sich mit dem Stand der Technik. Ein Abfall der Dauerfestigkeit mit zunehmender Beladung ist nachweislich nicht erfolgt. Durch eine Härtemessung (230 HV), wurde festgestellt, dass kein Vergütungszustand erzielt wurde. Die Unabhängigkeit der Dauerfestigkeit vom Wasserstoffgehalt wird mit dem unvergüteten Gefüge begründet und widerspricht daher nicht dem Stand der Technik. Metallografische Untersuchungen des Abgaskrümmers mit einer Laufzeit von über 1000 Stunden und signifikanter Wasserstoffkonzentration im Abgas haben keine Anzeichen für Korrosion durch Heißdampf ergeben. Dafür wurde das Gefüge der Innen- und Außenseite durch Schleifen, Polieren und Ätzen untersucht und miteinander verglichen. Eine Prüfung zu einem späteren Zeitpunkt wird dennoch empfohlen. Für das Ziel der Konstruktion eines Wasserstoffverbrennungsmotors wurde ein Versuchsansatz zur Bestimmung des Verhaltens der Dauerfestigkeit unter Wasserstoffeinfluss erfolgreich getestet. Für das Projekt sollte insbesondere die Reaktionsversprödung unter Betriebsdrücken und -temperaturen untersucht werden.



Zinke, Martin;
Beitrag zur Qualitätsverbesserung von stranggepressten Stangen und Profilen aus Kupfer- und Kupferlegierungen . - Ilmenau. - 105 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Die KME Mansfeld GmbH ist ein Hersteller von Kupferhalbzeugen mit Sitz im Süden Sachsen-Anhalts in Hettstedt. Das Produktportfolio von KME am Standort umfasst neben Walzerzeugnissen Strangpressprodukte wie Stangen und Profile aus Kupfer und Kupferlegierungen. Zur Überprüfung und Gewährleistung einer adäquaten Produktqualität werden die Stangen vor der Verpackung und Auslieferung einer Qualitätsüberprüfung unterzogen. Für ein spezielles Sortiment wird hierzu eine Wirbelstromprüfanlage verwendet. Diese Prüfanlage muss hinsichtlich ihrer Messsensibilität überprüft und kalibriert werden, um so als valides Fehlerdetektionssystem verwendet werden zu können. Durch diese Vorarbeit ist die Voraussetzung gegeben, dass eine anschließende Variation von Fertigungsprozessparametern beim Strangpressen mit dem Ziel der Produktqualitätsverbesserung, bewertet werden kann.



Ziems, Otto;
Untersuchungen zur Abhängigkeit der Pulvereigenschaften von der Kornform zylindrischer und plättchenartiger Körner. - Ilmenau. - 85 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Thema der vorliegenden Masterarbeit ist die Betrachtung einer zylindrischen bzw. plättchenartigen Partikelgeometrie für Kunststoffpulver der additiven Fertigung. Schwerpunkt der Untersuchungen ist der Zusammenhang zwischen der neuartigen Kornform und extrinsischen pulvertypischen Eigenschaften. Grundlagen der Pulverbettprozesse, der Pulverherstellung und der charakteristischen Pulvereigenschaften sind Teil des Stands der Technik. Darauf aufbauend werden Vorversuche gestaltet, mit denen die Faktoren Partikeldurchmesser, Pulvertemperatur und der Anteil sphärischer Partikel auf statistische Signifikanz geprüft werden. Im Rahmen der Hauptversuche werden verschiedene Partikelkonfigurationen gefertigt, die hinsichtlich Schüttdichte, Hausner-Faktor und Fließfähigkeit analysiert werden. Für die Durchführung werden, angepasst an die geringen Pulvermengen, neue Messmethoden entwickelt und validiert. Die Korngrößenverteilung der hergestellten Pulver wird als materialcharakterisierende Größe betrachtet und erfolgt über ein externes Labor. Aus den Ergebnissen der Hauptversuche geht hervor, dass der Durchmesser zylindrischer Partikel genutzt werden kann, um die Pulvereigenschaften gezielt zu steuern. Die Pulvertemperatur und der Anteil sphärischer Partikel haben insbesondere einen Effekt auf die Fließfähigkeit des Materials. Ein Benchmark-Vergleich mit drei kommerziellen Kunststoffpulvern aus Polypropylen hat ergeben, dass die neuartige Kornform für Pulverbettverfahren geeignete Merkmale erzielen kann. Es wird gezeigt, dass die zylindrische Partikelgeometrie Potenzial aufweist, um perspektivisch konkurrenzfähige Pulver für die additive Fertigung herzustellen.



Meyer, Jannik;
Konzeptionierung und Analyse von Antriebsbatteriegehäusestrukturen mit Komponenten aus dem Pultrusionsverfahren für den Einsatz in Nutzfahrzeugen. - Ilmenau. - 120 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Der strukturelle Wandel zur Elektromobilität ist nicht nur in der Automobilindustrie, sondern ebenfalls in der Nutzfahrzeugbranche zu beobachten. Vor allem im Segment der leichten Nutzfahrzeuge mit einem zulässigen Gesamtgewicht von 3,5 t steigt die Anzahl an Modellen mit elektrischem Antriebsstrang. Allerdings führt das Mehrgewicht der Antriebsbatterie in Kombination mit dem zulässigen Gesamtgewicht zu einer reduzierten Nutzlast und Wirtschaftlichkeit der Fahrzeuge. Neben den Batteriezellen bietet insbesondere das vorwiegend aus Aluminium und Stahl gefertigte Antriebsbatteriegehäuse Potenzial für Leichtbau, welches durch den Einsatz von Faserverbundkunststoffen (FVK) genutzt werden kann. In der vorliegenden Arbeit werden zunächst die Grundlagen von FVK und batterieelektrisch angetriebenen Fahrzeugen sowie der Aufbau von Antriebsbatterien und deren gesetzliche Anforderungen erläutert. Auf Basis bestehender Anwendungen von FVK im Bereich von Batteriegehäusen werden innovative Konzepte mit im Pultrusionsverfahren gefertigten FVK-Komponenten entwickelt. Anschließend erfolgt eine Bewertung nach mechanischen, wirtschaftlichen und nachhaltigen Kriterien. Als Konzept mit dem höchsten Potenzial geht ein Gehäuse mit Komponenten aus Aluminium, CFK und GFK hervor, welches eine Gewichtsersparnis von 15,2 kg und 15,3 % gegenüber der Referenz aus Aluminium aufweist. Weiterhin wird eine Vorauslegung mithilfe analytischer und numerischer Methoden vorgenommen. Abschließend erfolgt die Entwicklung eines vollständigen Antriebsbatteriekonzeptes, bestehend aus dem Batteriegehäuse, HV-Komponenten sowie einem Kühlsystem. Insgesamt wird gezeigt, dass sich pultrudierte FVK für den Leichtbau von Antriebsbatteriegehäusen eignen. Für eine tatsächliche Anwendung bedarf es allerdings weiterer Auslegungs- und Validierungsmaßnahmen.



Mouyibe, Eugene;
Untersuchung von Polymerbeschichteten Applikationswalzen und Determinierung prozesskritischer Fehlerklassen mittells Ultraschallmesstechnik. - Ilmenau. - 72 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Die Ultraschalltechnik wird als Verfahren zur Qualitätsprüfung der elastomeren Beschichtungen von Applikationswalzen, welche im Lackierprozess von Aluminiumbändern verwendet werden, untersucht. Die Nachweisbarkeit von Defekten innerhalb des Gummibelags, die für den Lackierprozess kritisch sind, wurde gezeigt. Im Rahmen dieser Arbeit wird ein Ultraschall-Versuchsstand für die Durchführung der Messungen verwendet. Der Prüfkopf ist in einem mit Wasser vollgefülltem Kunststoffrad eingebaut. Das Rad ist in Kontakt mit der Walzenoberfläche und wird mit Hilfe eines Mikropositioniersystems entlang die Walze gefahren, während diese rotiert. Dadurch wird die gesamte Oberfläche der Applikationswalze abgetastet. Voruntersuchungen an kleinen Gummimustern mit Löchern haben gezeigt, dass die Detektierbarkeit der Defekte von Parametern wie dem Elastomer-Typ sowie der Größe und Tiefenlage der Fehlstelle abhängig ist. Es wurde festgestellt, dass die Umdrehung der Apllikationswalze in Kontakt mit dem Kunststoffrad ein stark verrauschtes Signal erzeugt, was nicht nur das Erkennen von Fehlstellen erschwert, sondern auch die automatisierte Auswertung der Messdaten. Lufteinschlüsse, Fremdkörper und Kernablösungen wurden bei einigen Applikationswalzen detektiert.



Mandavkar, Ninad Sunil;
Preparation of MoS2 2D nanocomposites for energy storage and conversion by liquid phase exfoliation. - Ilmenau. - 60 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Das Aufkommen von Technologie und Innovation hat den Horizont für den Einsatz neuer Materialien und neuer Ideen zur Verbesserung der Leistung von Batterien erweitert. Das Hauptaugenmerk der Innovatoren liegt auf der Herstellung einer hocheffizienten Batterieelektrode, wobei die Forscher nun nach neuen Parametern suchen, die sie manipulieren können, um eine hochwertige Leistung und einen höheren Durchsatz zu erzielen. Diese Eigenschaften lassen sich anschaulich in ihre Strombelastbarkeit, die anhand ihrer charakteristischen Strom-Spannungs-Kurven oder sozusagen ihrer Speicherkapazität für eine große Anzahl von Zyklen gemessen werden kann, ihre Langlebigkeit, ihre hohe Strombelastbarkeit, ihre Lade- und Entladekurven, den Gehalt an interkaliertem Material (Gewichtsverhältnisse), eine größere Bandlücke, eine größere Oberfläche der Ioneninterkalation, einen geringeren Zerfall, eine höhere Stabilität usw. einteilen. Unsere Methode sieht eine einfache Zerkleinerung von MoS2 und Substituenten wie Pektin, Lignin und Gummi Arabicum vor, gefolgt von einer konventionellen Exfoliation in flüssiger Phase in flüchtigen Lösungsmitteln, die zu einer effizienten Exfoliation von MoS2-Nanoblättern in halbleitender hexagonaler Phase (2H-MoS2) und zur gleichzeitigen Herstellung von zweidimensionalen (2D) Nanokompositen aus 2H-MoS2 und Pektin/Gummi/Lignin führt. Darüber hinaus ermöglicht die Pektin-basierte Interkalation eine sehr schnelle Extraktion aus der Kathode, was eine höhere Mobilität der geladenen Ionen in Verbindung mit besseren Adsorptionselektroden gewährleistet, wodurch die Strombelastbarkeit von Natrium-Ionen-Batterien (SIBs) erhöht wird. Es wurde auch nachgewiesen, dass diese Nanokomposite gute Anodenmaterialien für Natrium-Ionen-Batterien (SIBs) sind, die bei einer Karbonisierungstemperatur von 1100℃ eine anfängliche Kapazität von 410 mAhg-1 aufweisen, die bei 700℃ allmählich auf 500 mAhg-1 ansteigt und schließlich bei einer Karbonisierungstemperatur von 900℃ einen sehr hohen Wert von 560 mAhg-1 erreicht. Wir haben uns auch bewusst bemüht, einen Kompromiss zwischen der Speicherkapazität und der Haltbarkeit der Elektrode zu finden, so dass unser Ziel darin besteht, die reversible Speicherkapazität zu erhöhen, ohne Kompromisse bei der Leistung, Haltbarkeit und Lebensdauer der Batterie einzugehen. Das Hauptaugenmerk unseres Projekts liegt darauf, zu entschlüsseln, wie kritisch der Einfluss der beteiligten Prozesse ist, im Wesentlichen die Anwendung schierer Kräfte beim Mahlen, die Flüchtigkeit und die Siedepunkte der Lösungsmittel, die Geschwindigkeit der zentrifugierten Dispersionen, um eine optimale sedimentierte Lösung zu erhalten, das Verhältnis der Rückhaltung der Überstände, um die Menge der abgeschälten Nanoblätter zu erhalten usw. Die Dauer, in der die einzelnen Prozesse ausgeführt werden, ist ein weiterer wichtiger Faktor für die Ausbeute. Daher haben wir Daten auf der Grundlage von Prozessparametern wie Mahldauer, Mahllösungsmittel, Beschallungsdauer, Anzahl der verwendeten Lösungsmittel und Zentrifugationsrate auf die erhaltenen ultradünnen 2D-Nanoblätter extrapoliert. Darüber hinaus werden Analysen und Schlussfolgerungen nach sorgfältiger Untersuchung des Absorptionsspektrums (UV-Vis-Analyse), der Rasterelektronenmikroskopie (SEM-Analyse), der Rasterkraftmikroskopie (AFM-Analyse), der Röntgenbeugung (XRD-Analyse) und der Leistungsmerkmale (Lade- und Entladezyklen) gezogen. Das Ziel dieser Verteidigung ist es, eine hocheffiziente Batterieelektrode herzustellen, die eine gute Stabilität für mehrere Zyklen, vergleichbare Abklingraten, eine hohe Speicherkapazität für noch größere Ionen, eine große Oberfläche für eine schnelle Ionentransferkinetik, optimale interkalierende Substituenten zur Vermeidung von Restacking und Verschlechterung der Elektrode und zur Nutzung der Eigenschaften eines Übergangsmetalldichalcogenids wie MoS2 bietet, indem es gerichtlich verwendet wird, um ultradünne Nanoblätter mit verschiedenen Tensiden und Lösungsmitteln zu exfolieren, um ein 2D-Nanokompositmaterial zu erhalten, das in SIBs verwendet werden kann.



Shah, Shyam;
Multi-layered ultra-thick cathodes with different active material particle size distributions. - Ilmenau. - 72 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Im Vergleich zu dünneren Elektroden bieten ultradicke Elektroden ein günstiges Verhältnis von aktivem zu passivem Material, was zu günstigeren Preisen und weniger Verarbeitungsaufwand für Hochenergieanwendungen führt. Aufgrund von Beschränkungen des Li+-Massentransports zeigen herkömmliche dicke Elektrodenkonstruktionen bei hohen Entladungsraten jedoch oft eine schlechte Leistung. Eine ausgefeiltere Mikrostruktur der Elektrode kann dazu beitragen, diese Schwierigkeit zu mildern, z. B. durch Strukturgradienten. Dies kann z. B. durch zweischichtiges Gießen erreicht werden. Die Eigenschaften von LIB-Elektroden können einen Zweilagenauftrag verschiedener Suspensionen beeinflusst werden. Verbesserte Eigenschaften sind in der Literatur nachgewiesen worden. Das Auftragen einer zweiten Schicht auf eine bereits getrocknete erste Schicht zeigt jedoch Beeinträchtigungen. Diese können vermieden werden, indem die entsprechenden zwei Suspensionen durch eine zweischichtige Schlitzdüsenbeschichtung gleichzeitig aufgetragen werden, was auf einer Pilotlinie oder mit Produktionsanlagen erfolgen kann. In dieser Arbeit wurde als Konzept zur Nachahmung des großtechnischen Prozesses ein Prozess im Labormaßstab untersucht, bei dem zwei Schichten ohne Zwischentrocknung aufeinander mittels Rakelauftrag für NCM851005 mit unterschiedlichen Partikelgrößen aufgetragen wird. Im ersten Teil dieser Arbeit wurden Zielparameter für die rheologischen Eigenschaften der Suspensionen und für einen zweischichtigen Beschichtungsprozess mittels Rakelapplikation erforscht. Im zweiten Teil wurden geeignete Methoden zur Charakterisierung von Dicke, Massebeladung und Dichte der einzelnen Schichten der hergestellten zweischichtigen Strukturen entwickelt. Zur Berechnung der Flächenbeladung einer Einzelschicht von Zweischicht-Elektroden wurde der Massenanteil eingeführt. Der berechnete Massenanteil der einzelnen Schicht wurde durch elektrochemische Messungen in einer Halbzellenanordnung gegen Li/Li+ in Knopfzellen verifiziert. Schließlich wurde die Porosität der einzelnen Schichten der Zweischicht-Elektrode mit Hilfe der optischen Bildanalyse (ImageJ) gemessen und die Zuverlässigkeit dieser Messung anhand von MIP-Messungen und mit Hilfe der aus dem Gewichtsanteil berechneten Porosität überprüft.



Development of a micro quartz-MEMS resonator for space applications. - Ilmenau. - 64 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Piezoelektrizität ist ein physikalisches Phänomen, das das elektrische und mechanische Verhalten bestimmter Materialien wie Quarz oder Langasit miteinander verbindet. Dieses Phänomen wird genutzt, um ein passives elektrisches Bauteil, einen so genannten Resonator, zu konstruieren, der bei elektrischer Anregung mit einer sehr genauen Frequenz schwingt. Diese Resonanzfrequenz wird für die Zeitmessung in elektronischen Geräten verwendet. Quarz ist dank seiner sehr guten piezoelektrischen Eigenschaften eines der am häufigsten verwendeten Materialien für die Herstellung von Resonatoren. Sein intrinsischer Qualitätsfaktor ist hoch, seine Empfindlichkeit gegenüber externen Parametern wie der Temperatur ist gering und er lässt sich leicht synthetisieren, was ihn für die Herstellung interessant macht.Die Konzeption eines hochfrequenten Quarzresonators, der sowohl leistungsfähig als auch von geringer Größe ist, stellt ein wichtiges Thema in der Mikroelektronik dar. Gegenwärtige MEMS-Oszillatoren (mikroelektromechanische Systeme) verwenden häufig Siliziumresonatoren, die leichter zu miniaturisieren, aber weniger leistungsfähig sind als Quarzresonatoren. Die Miniaturisierung von Quarzresonatoren würde es ermöglichen, die Leistung von MEMS-Oszillatoren zu verbessern und sie gleichzeitig zu verkleinern. Der Ausgangspunkt für die Konzeption unseres Quarz-MEMS-Resonators ist ein kreisförmiger Resonator mit einem Schermodus bei 100 MHz. Sein derzeitiges Volumen beträgt etwa 30 mm3 und soll durch etwa 10 geteilt werden. Eine Modellierung dieses Resonators wurde mit Hilfe der Finite-Elemente-Methode (FEM) durchgeführt, um sein Verhalten zu beschreiben. Gleichzeitig wurde eine Forschungsarbeit über den Herstellungsprozess durchgeführt, da die in der Entwurfsphase erreichten Dicken sehr gering sind. Da es unmöglich ist Standardwafer zu verwenden, wurden "hybride" Wafer eingesetzt. Schließlich konnte eine Charakterisierungsarbeit durchgeführt werden, die erste Ergebnisse zeigte, die Grundschwingung, aber auch die fünfte Harmonische konnten gemessen werden.



Calmbach, Jasmin;
Integrating porous Cu2O/CuO heterostructures to improve the photostability for solar water splitting. - Ilmenau. - 91 Seiten
Technische Universität Ilmenau, Masterarbeit 2022

Die Forschung zur Herstellung von grünem Wasserstoff zur Dekarbonisierung des Energiesektors gewinnt zunehmend an Bedeutung. Ähnlich zur Wasserelektrolyse, bei der Wasser unter Anwendung einer externen Spannungsquelle in seine Bestandteile Wasserstoff und Sauerstoff aufgespalten wird, nutzt die Photolyse direkt das Sonnenlicht als erneuerbare Quelle zur Generierung der notwendigen Spannung. Kupfer(I)-oxid (Cu2O) ist ein attraktives Material für diese Anwendung. Aufgrund der geeigneten Bandlücke von etwa 2eV und passenden Bandpositionen sowie niedriger Herstellungskosten, die mit der Verfügbarkeit von Kupfer (Cu) zusammenhängen, ist Cu2O ein vielversprechender p-Halbleiter, der für die Wasserstoffentwicklung Einsatz findet. Jedoch leidet dieses Material in photoelektrochemischen (PEC) Anwendungen unter Photokorrosion. Diese Arbeit integriert deshalb eine Schicht aus Kupfer(II)-oxid (CuO), welche eine bessere Photostabilität als Cu2O in wässrigen Elektrolyten aufweist. Ein poröses Cu-Gerüst wird durch elektrochemische Abscheidung aus einem Cu-Sulfat-Elektrolyten hergestellt. Die Struktur mit vergrößerter Oberfläche dient als Substrat für die anschließende potentiostatische Abscheidung der photoaktiven Cu2O-Schicht aus alkalischer Cu(II)-Citratlösung (pH 12). Die Proben werden dann in Luft bei unterschiedlichen Temperaturen und Glühzeiten thermisch oxidiert, um verschiedene Cu2O/CuO-Heterostrukturen zu erhalten. Mit Röntgendiffraktometrie, Rasterelektronenmikroskopie, sowie Linear-Sweep-Voltammetrie (LSV) und Chronoamperometrie unter gepulster Beleuchtung werden die Materialeigenschaften charakterisiert. Die LSV-Ergebnisse zeigen, dass Proben mit einer dünnen, homogenen Schicht aus Cu2O Photoströme von bis zu −3.4 mA/cm2 bei −0.1 V vs. RHE und −2.2 mA/cm2 bei 0 V vs. RHE in 0.5M Na2SO4 (pH 5.7) ermöglichen. Ein niedriger Dunkelstrom bleibt erhalten (−0.16 mA/cm2 bei 0 V vs. RHE). Die Heterostrukturen senken den Photostrom auf −1.4 mA/cm2 bei 0 V vs. RHE und der Dunkelstrom erhöht sich (−0.35 mA/cm2 bei 0 V vs. RHE). Diese Erkenntnisse entsprechen nicht den Ergebnissen von flachen Cu2O/CuO-Heterostrukturen aus der Literatur und offenbaren einen neuen Aspekt durch die Verwendung poröser Cu-Substrate. Das Substrat ist beim Ausglühen erheblichen Materialspannungen ausgesetzt, welche zu Nanodrahtwachstum und Oberflächenrissen führen können. Dennoch zeigen die porösen Cu2O/CuO-Photokathoden in Abwesenheit von teuren Katalysatoren oder Schutzschichten eine verbesserte Photostabilität. Nach 1h gepulster Beleuchtung bleibt die Photoaktivität bei etwa 20% des ursprünglichen Photostromes. Hingegen sinkt die Photoaktivität von Cu2O-Photokathoden nach 1h auf <5%. Im Allgemeinen bietet diese Arbeit daher einen Ansatz für die Herstellung von kostengünstigen und stabilen Photokathoden aus verfügbaren Materialien für die solare Wasserstoffproduktion.