Publikationen an der Fakultät für Informatik und Automatisierung ab 2015

Anzahl der Treffer: 1969
Erstellt: Fri, 26 Jul 2024 23:17:59 +0200 in 0.1028 sec


Ahtiainen, Annika; Leydolph, Lilly; Tanskanen, Jarno M. A.; Hunold, Alexander; Haueisen, Jens; Hyttinen, Jari A. K.
Electric field temporal interference stimulation of neurons in vitro. - In: Lab on a chip, ISSN 1473-0189, Bd. 0 (2024), 0, insges. 13 S.

Electrical stimulation (ES) techniques, such as deep brain and transcranial electrical stimulation, have shown promise in alleviating the symptoms of depression and other neurological disorders in vivo. A new noninvasive ES method called temporal interference stimulation (TIS), possesses great potential as it can be used to steer the stimulation and possibly selectively modulate different brain regions. To study TIS in a controlled environment, we successfully established an in vitro ‘TIS on a chip’ setup using rat cortical neurons on microelectrode arrays (MEAs) in combination with a current stimulator. We validated the developed TIS system and demonstrated the spatial steerability of the stimulation by direct electric field measurements in the chip setup. We stimulated cultures of rat cortical neurons at 28 days in vitro (DIV) by two-channel stimulation delivering 1) TIS at 653 Hz and 643 Hz, resulting in a 10 Hz frequency envelope, 2) low-frequency stimulation (LFS) at 10 Hz and 3) high-frequency stimulation (HFS) at 653 Hz. Unstimulated cultures were used as control/sham. We observed the differences in the electric field strengths during TIS, HFS, and LFS. Moreover, HFS and LFS had the smallest effects on neuronal activity. Instead, TIS elicited neuronal electrophysiological responses, especially 24 hours after stimulation. Our ‘TIS on a chip’ approach eludicates the applicability of TIS as a method to modulate neuronal electrophysiological activity. The TIS on a chip approach provides spatially steerable stimuli while mitigating the effects of high stimulus fields near the stimulation electrodes. Thus, the approach opens new avenues for stimulation on a chip applications, allowing the study of neuronal responses to gain insights into the potential clinical applications of TIS in treating various brain disorders.



https://doi.org/10.1039/D4LC00224E
Nteutse, Peguy Kameni; Mugenga, Ineza Remy; Geletu, Abebe; Li, Pu
Novel ordinary differential equation for state-of-charge simulation of rechargeable lithium-ion battery. - In: Applied Sciences, ISSN 2076-3417, Bd. 14 (2024), 12, 5284, S. 1-15

Lithium-ion battery energy storage systems are rapidly gaining widespread adoption in power systems across the globe. This trend is primarily driven by their recognition as a key enabler for reducing carbon emissions, advancing digitalization, and making electricity grids more accessible to a broader population. In the present study, we investigated the dynamic behavior of lithium-ion batteries during the charging and discharging processes, with a focus on the impact of terminal voltages and rate parameters on the state of charge (SOC). Through modeling and simulations, the results show that higher terminal charging voltages lead to a faster SOC increase, making them advantageous for applications requiring rapid charging. However, large values of voltage-sensitive coefficients and energy transfer coefficients were found to have drawbacks, including increased battery degradation, overheating, and wasted energy. Moreover, practical considerations highlighted the trade-off between fast charging and time efficiency, with charging times ranging from 8 to 16 min for different rates and SOC levels. On the discharging side, we found that varying the terminal discharging voltage allowed for controlled discharging rates and adjustments to SOC levels. Lower sensitivity coefficients resulted in more stable voltage during discharging, which is beneficial for applications requiring a steady power supply. However, high discharging rates and sensitivity coefficients led to over-discharging, reducing battery life and causing damage. These new findings could provide valuable insights for optimizing the performance of lithium-ion batteries in various applications.



https://doi.org/10.3390/app14125284
Sämann, Timo;
Mechanisms to increase the safety of safety-critical Deep Neural Network-based environmental perception for autonomous driving. - Ilmenau : Universitätsbibliothek, 2024. - 1 Online-Ressource (ix, 158 Seiten)
Technische Universität Ilmenau, Dissertation 2024

Die Realisierung des autonomen Fahrens hat sich längst zu einem technologischen Wettlauf entwickelt, dessen Herausforderung mit der Raumfahrt des letzten Jahrhunderts vergleichbar ist. Auf dem Weg zur Verwirklichung der Vision des autonomen Fahrens wird immer deutlicher, dass die künstliche Intelligenz (KI) mit ihren revolutionären Fähigkeiten den Dreh- und Angelpunkt bildet. Allerdings geht es nicht nur um KI, sondern insbesondere um sichere KI. Grundlegende Voraussetzungen für eine sichere KI sind 1) die Identifizierung und 2) die ausreichende Mitigierung der KI inhärenten Schwächen. Es ist wichtig festzuhalten, dass, wenn im Zusammenhang mit autonomem Fahren von KI die Rede ist, in der Regel Deep Neural Networks (DNNs) impliziert sind. Die vorliegende Arbeit konzentriert sich auf genau diese beiden Probleme von DNNs, die in der Umweltwahrnehmung im Bereich autonomes Fahren eingesetzt werden. Nach einer detaillierten Beschreibung der systematischen, latenten Schwächen von DNNs (sogenannte DNN-Unzulänglichkeiten) werden vier Sicherheitsmechanismen vorgestellt, die jeweils eine DNN-Unzulänglichkeit mitigieren. Die entwickelten Sicherheitsmechanismen umfassen die Fusion von Gewichten, die Ausnutzung der zeitlichen Konsistenz von Videodaten, das Pruning von Gewichten und die Out-of-Domain-Erkennung zur Laufzeit. Die Wirksamkeit der vorgestellten Ansätze wird in zahlreichen Experimenten demonstriert und in den aktuellen Stand der Technik eingeordnet. Darüber hinaus wurden diese Ansätze beispielhaft in eine Sicherheitsargumentation eingebunden, die eine strukturierte und transparente Möglichkeit bietet, die Sicherheitsaspekte von KI-Systemen zu dokumentieren. Durch die Identifizierung von DNN-Unzulänglichkeiten, die Entwicklung von Mitigierungsmechanismen, die Validierung ihrer Wirksamkeit und die Integration in eine Sicherheitsargumentation, leistet diese Arbeit einen wichtigen Beitrag zur Weiterentwicklung der sicheren KI im Bereich des autonomen Fahrens.



https://doi.org/10.22032/dbt.61893
Bedini, Francesco; Räth, Timo; Maschotta, Ralph; Sattler, Kai-Uwe; Zimmermann, Armin
Automated transformation of a domain-specific language for system modeling to Stochastic Colored Petri Nets. - In: IEEE Xplore digital library, ISSN 2473-2001, (2024), insges. 8 S.

Petri Net models are widely recognized for their ability to analyze concurrent, stochastic processes based on a solid mathematical foundation. However, one drawback of Petri Nets is their low-level abstraction: they offer only a few basic elements like places and transitions to represent all system components. While this limitation may not be an issue when working with small models, it becomes challenging when attempting to model larger processes or systems. As the complexity increases, the number of elements in the Petri Net also grows, making it difficult to distinguish and maintain them effectively. Furthermore, Petri Nets require verification to ensure that they accurately represent the behavior of the system they are intended to model. This verification process must be repeated whenever a model is created or modified. To address these challenges, this paper describes a Stochastic colored Petri Net semantics of a domain-specific language that allows modeling time-based hardware and software systems. We have developed a custom Eclipse-based framework that allows for both graphical and textual modeling, providing editors with useful features such as real-time validation of model constraints, which is not feasible at the low-level Petri Net abstraction due to the lack of contextual information. The DSL also offers the advantage of easy conversion from other modeling languages thanks to an intermediate language. From the model, valid Stochastic Colored Petri Nets (SCPNs) can be generated, which can automatically simulate certain system properties consistently. This approach aims to enhance modeling capabilities and alleviate some of the limitations associated with traditional Petri Nets.



https://doi.org/10.1109/SysCon61195.2024.10553543
Aguirre Mehlhorn, Marcel; Dierend, Hauke; Richter, Andreas; Shardt, Yuri A. W.
A stakeholder analysis of operational design domains of automated driving systems. - In: IEEE Xplore digital library, ISSN 2473-2001, (2024), insges. 2 S.

Developing an automated driving system (ADS) involves collaboration between various stakeholders. To support this process, the concept of operational design domain (ODD) has emerged. Nonetheless, stakeholders require variable levels of information from an ODD. A thorough investigation has identified eight main stakeholder categories. Furthermore, a stakeholder analysis is used to assess their expectations, interests, and influence. These findings briefly summarise all necessary ODD engineering requirements and deliverables for all ODD stakeholders.



https://ieeexplore.ieee.org/document/10546564
Mora, Karin; Rzanny, Michael Carsten; Wäldchen, Jana; Feilhauer, Hannes; Kattenborn, Teja; Kraemer, Guido; Mäder, Patrick; Svidzinska, Daria; Wolf, Sophie; Mahecha, Miguel
Macrophenological dynamics from citizen science plant occurrence data. - In: Methods in ecology and evolution, ISSN 2041-210X, Bd. 00 (2024), 0, insges. 16 S.

Phenological shifts across plant species is a powerful indicator to quantify the effects of climate change. Today, mobile applications with automated species identification open new possibilities for phenological monitoring across space and time. Here, we introduce an innovative spatio-temporal machine learning methodology that harnesses such crowd-sourced data to quantify phenological dynamics across taxa, space and time. Our algorithm links individual phenological responses across thousands of species and geographical locations, using a similarity measure. The analysis draws on nearly ten million plant observations collected through the AI-based plant identification app Flora Incognita in Germany from 2018 to 2021. Our method quantifies changes in synchronisation across the annual cycle. During the growing season, synchronised behaviour can be encoded by a few characteristic macrophenological patterns. Nonlinear spatio-temporal changes of these patterns can be efficiently quantified using a data compressibility measure. Outside the growing season, the phenological synchronisation diminishes introducing noise into the patterns. Despite biases and uncertainties associated with crowd-sourced data, for example due to human data collection behaviour, our study demonstrates the feasibility of deriving meaningful indicators for monitoring plant macrophenology from individual plant observations. As crowd-sourced databases continue to expand, our approach holds promise to study climate-induced phenological shifts and feedback loops.



https://doi.org/10.1111/2041-210X.14365
Funnell, Jessica L.; Fougere, Jasper; Zahn, Diana; Dutz, Silvio; Gilbert, Ryan J.
Delivery of TGFβ3 from magnetically responsive coaxial fibers reduces spinal cord astrocyte reactivity in vitro. - In: Advanced biology, ISSN 2701-0198, Bd. 0 (2024), 0, 2300531, S. 1-14

A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFβ3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFβ3 exposure on reactive astrocyte phenotype have not yet been explored. This study investigates whether magnetic core-shell electrospun fibers can be used to alter the release rate of TGFβ3 using externally applied magnetic fields, with the eventual application of tailored drug delivery based on SCI severity. Magnetic core-shell fibers are fabricated by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) into the shell and TGFβ3 into the core solution for coaxial electrospinning. Magnetic field stimulation increased the release rate of TGFβ3 from the fibers by 25% over 7 days and released TGFβ3 reduced gene expression of key astrocyte reactivity markers by at least twofold. This is the first study to magnetically deliver bioactive proteins from magnetic fibers and to assess the effect of sustained release of TGFβ3 on reactive astrocyte phenotype.



https://doi.org/10.1002/adbi.202300531
Zahn, Diana; Diegel, Marco; Valitova, Alina; Dellith, Jan; Dutz, Silvio
Magnetic barium hexaferrite nanoparticles with tunable coercivity as potential magnetic heating agents. - In: Nanomaterials, ISSN 2079-4991, Bd. 14 (2024), 12, 992, S. 1-20

Using magnetic nanoparticles (MNPs) for extracorporeal heating applications results in higher field strength and, therefore, particles of higher coercivity can be used, compared to intracorporeal applications. In this study, we report the synthesis and characterization of barium hexa-ferrite (BaFe12O19) nanoparticles as potential particles for magnetic heating. Using a precipitation method followed by high-temperature calcination, we first studied the influence of varied synthesis parameters on the particles’ properties. Second, the iron-to-barium ratio (Fe/Ba = r) was varied between 2 and 12. Vibrating sample magnetometry, scanning electron microscopy and X-ray diffraction were used for characterization. A considerable influence of the calcination temperature (Tcal) was found on the resulting magnetic properties, with a decrease in coercivity (HC) from values above 370 kA/m for Tcal = 800-1000 ˚C to HC = 45-70 kA/m for Tcal = 1200 ˚C. We attribute this drop in HC mainly to the formation of entirely multi-domain particles at high Tcal. For the varying Fe/Ba ratios, increasing amounts of BaFe2O4 as an additional phase were detected by XRD in the small r (barium surplus) samples, lowering the particles’ magnetization. A decrease in HC was found in the increased r samples. Crystal size ranged from 47 nm to 240 nm and large agglomerates were seen in SEM images. The reported particles, due to their controllable coercivity, can be a candidate for extracorporeal heating applications in the biomedical or biotechnological field.



https://doi.org/10.3390/nano14120992
Petkoviâc, Bojana; Ziolkowski, Marek; Töpfer, Hannes; Haueisen, Jens
A new stress tensor approach for application to the conductor surface. - In: Compel, ISSN 2054-5606, Bd. 0 (2024), 0

Purpose: The purpose of this paper is to derive a new stress tensor for calculating the Lorentz force acting on an arbitrarily shaped nonmagnetic conductive specimen moving in the field of a permanent magnet. The stress tensor allows for a transition from a volume to a surface integral for force calculation. Design/methodology/approach: This paper derives a new stress tensor which consists of two parts: the first part corresponds to the scaled Poynting vector and the second part corresponds to the velocity term. This paper converts the triple integral over the volume of the conductor to a double integral over its surface, where the subintegral functions are continuous through the different compartments of the model. Numerical results and comparison to the standard volume discretization using the finite element method are given. Findings: This paper evaluated the performance of the new stress tensor computation on a thick and thin cuboid, a thin disk, a sphere and a thin cuboid containing a surface defect. The integrals are valid for any geometry of the specimen and the position and orientation of the magnet. The normalized root mean square errors are below 0.26% with respect to a reference finite element solution applying volume integration. Originality/value: Tensor elements are continuous throughout the model, allowing integration directly over the conductor surface.



https://doi.org/10.1108/COMPEL-10-2023-0543
Oppermann, Hannes; Fiedler, Patrique; Haueisen, Jens
Microstates analysis for dry and gel-based multichannel electroencephalography. - In: 9th European Medical and Biological Engineering Conference, (2024), S. 122-130

Spatial analysis of EEG data, e.g. using short-term stable microstates, is increasingly used in neuroscience and clinical applications. At the same time, scenarios involving mobility, sports, and home-based activities are becoming more prevalent in EEG studies. For this purpose, dry EEG electrodes are more and more commonly used. Thus, our objective was a comparison of microstates analysis between dry and gel-based EEGs. 256-channel EEGs were recorded from 30 volunteers using dry and gel-based electrodes during resting state eyes closed and eyes open. Microstates were extracted for each measurement and time-domain parameters were calculated. We found a high degree of consistency between the microstate maps extracted from dry and gel-based measurements for both eyes closed and eyes open conditions. The topographic similarities between the average maps for dry and gel-based recordings were above 81.5% for each of the seven extracted maps. We conclude that topographic microstate analyses are feasible using multichannel EEG setups with new dry EEG electrodes.