Erscheinungsjahr 2023

Anzahl der Treffer: 114
Erstellt: Sat, 04 May 2024 23:19:54 +0200 in 0.0642 sec


Matthes, Sebastian; Glaser, Marcus; Vardo, Emina; Sauni Camposano, Yesenia Haydee; Jaekel, Konrad; Bergmann, Jean Pierre; Schaaf, Peter
Influence of extrinsic induced tensile stress on the self-propagating high-temperature synthesis of nanosized Al/Ni multilayers. - In: Journal of materials science, ISSN 1573-4803, Bd. 58 (2023), 24, S. 10085-10095

Reactive multilayer systems consisting of alternating nanoscale Al and Ni layers are applicable in joining, various pyrotechnic applications and thermal batteries. Since diffusion based high-temperature synthesis occurs without the presence of air, efforts have focused on investigating the understanding of the fundamental reaction processes and characteristics. The aim of this study is to expose the reactive multilayers to extrinsic induced tensile stress so that the self-propagating synthesis can proceed under these conditions. Further, the properties during and after the reaction will be investigated. Multilayers deposited by sputtering on Kapton® substrates with different bilayer- and total thicknesses as well as commercial Nanofoils® with thicknesses of 40 µm and 60 µm were used as samples. The investigations focused on the propagation velocity measured with a high-speed camera, the temperature regime determined with a high-speed pyrometer, and the formed phases after the synthesis examined via X-ray diffraction. The gained results of this study reveal important insights for the application of the reactive Al/Ni multilayer system in terms of stability or reliability related to propagation front velocity, maximum temperature and formed phases under induced external tensile stresses.



https://doi.org/10.1007/s10853-023-08618-w
Sharifi Ghazijahani, Mohammad; Cierpka, Christian
Flow structure and dynamics behind cylinder arrays at Reynolds number ∼100. - In: Physics of fluids, ISSN 1089-7666, Bd. 35 (2023), 6, 067125, S. 067125-1-067125-14

The flow behind nine different arrays of cylinders is experimentally investigated via Particle Image Velocimetry (PIV) at a Reynolds number of Re ∼ 100 based on the diameter of the cylinders. Each array consists of a column of four cylinders in front and three in the rear. The horizontal distance between the two columns and the vertical distance between the cylinders within each column are varied for H/D = [2, 4, 8] and V/D = [2, 4, 6], resulting in nine different arrays denoted as mVnH, where m corresponds to V/D and n stands for H/D. The PIV measurements are conducted for 15 s at 200 Hz frequency, corresponding to 39 to 360 vortex shedding events for the wakes in this study. Then, proper orthogonal decomposition is applied to the velocity fields to analyze the flow dynamics. All arrays show unsteady flow, and based on their flow structures, they are classified in to three main categories of single bluff body (SBB), transitional (TR), and co-shedding (CS) flow. SBB characteristics can be seen for 2V2H and 2V4H arrays, but the latter has more steady vortex shedding as the H/D increases from 2 to 4. Then, 2V8H and 4V2H have an asymmetric flow with several vortex streets and act as an intermediary stage in the shift from SBB to CS flow structure when the distances are increased. The highest total kinetic energy values and widest probability density functions of the velocity components are observed for this group. The five remaining arrays in the CS group have symmetric flow, with three or five vortex streets present behind. However, based on the distances, the frequency and phase synchronization of the vortex streets change considerably, which might have an important effect on, for example, the heat transfer or the structural load of the cylinders.



https://doi.org/10.1063/5.0155102
Mazétyté-Stasinskiené, Raminta; Kronfeld, Klaus-Peter; Köhler, Michael
Five-level structural hierarchy: microfluidically supported synthesis of core-shell microparticles containing nested set of dispersed metal and polymer micro and nanoparticles. - In: Particle & particle systems characterization, ISSN 1521-4117, Bd. 14 (2023), 10, 2300030, S. 1-13

This study presents the development of a hierarchical design concept for the synthesis of multi-scale polymer particles with up to five levels of organization. The synthesis of core-shell microparticles containing nested sets of dispersed metal and polymer micro- and nanoparticles is achieved through in situ photopolymerization using a double co-axial capillaries microfluidic device. The flow rates of the carrier, shell, and core phases are optimized to control particle size and result in stable core-shell particles with well-dispersed three-level composites in the shell matrix. The robustness and reversibility of these core-shell particles are demonstrated through five cycles of drying and re-swelling, showing that the size and structure of core-shell particles remain unchanged. Additionally, the permeability and mobility of dye molecules within the shell matrix are tested and showed that different molecular weight dyes have different penetration times. This study highlights the potential of microfluidics as a powerful tool for the controlled and precise synthesis of complex structured materials and demonstrates the versatility and potential of these core-shell particles for sensing applications as particle-based surface-enhanced Raman scattering (SERS).



https://doi.org/10.1002/ppsc.202300030
Isaac, Nishchay Angel; Schlag, Leslie; Ispas, Adriana; Reiprich, Johannes; Soydan, Alper K.; Moreira, Pedro H. O.; Thiele, Sebastian; Aliabadian, Bardia; Flock, Dominik; Knauer, Andrea; Jiménez, Juan J.; Bund, Andreas; Morales Sánchez, Francisco Miguel; Pezoldt, Jörg; Jacobs, Heiko O.
Novel gas phase route toward patterned deposition of sputter-free Pt/Al nanofoils. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 8 (2023), 18, 2300448, S. 1-8

This article reports a new approach toward fabrication and directed assembly of nanoparticulate reactive system (Nanofoils) on patterned substrates. Different from current state-of-the-art, gas phase electrodeposition uses nanoparticles instead of atoms to form densely packed multilayered thin films at room temperature-pressure. On ignition, the multilayer system undergoes an exothermic self-propagating reaction. The numerous contact points between two metallic nanoparticulate layers aid in high heat release. Sub-10-nm Platinum (Pt) and Aluminum (Al) particles are synthesized through cathode erosion of metal electrodes in a flow of pure nitrogen gas (spark ablation). Pt/Al bilayer stacks with total thickness of 3–8 µm undergo self-propagating reaction with a 10.3 mm s−1 wavefront velocity on local ignition. The reaction wavefront is captured using high speed videography. Calorimetry studies reveal two exothermic peaks suggesting Pt/Al alloy formation. The peak at 135 ˚C has a higher calorific value of 150 mW g−1 while the peak at 400 ˚C has a 12 mW g−1 exothermic peak. X-ray diffraction study shows reaction-products are cubic Al2Pt with small quantities of orthorhombic Al6Pt and orthorhombic AlPt2. Electron microscopy studies help draw a correlation between film morphology, bimetallic interface, nanoparticle oxidation, and self-propagating reaction kinetics that is significant in broadening our understanding towards nanoparticulate reactive systems.



https://doi.org/10.1002/admt.202300448
Brokmann, Ulrike; Weigel, Christoph; Altendorf, Luisa-Marie; Strehle, Steffen; Rädlein, Edda
Wet chemical and plasma etching of photosensitive glass. - In: Solids, ISSN 2673-6497, Bd. 4 (2023), 3, S. 213-234

Photosensitive glasses for radiation-induced 3D microstructuring, due to their optical transparency and thermal, mechanical, and chemical resistance, enable the use of new strategies for numerous microscale applications, ranging from optics to biomedical systems. In this context, we investigated the plasma etching of photosensitive glasses after their exposure and compared it to the established wet chemical etching method, which offers new degrees of freedom in microstructuring control and microsystem fabrication. A CF4/H2 etching gas mixture with a constant volumetric flow of 30 sccm and a variable H2 concentration from 0% to 40% was utilized for plasma-based etching, while for wet chemical etching, diluted hydrofluoric acid (1% ≤ cHF ≤ 20%) was used. Therefore, both etching processes are based on a chemical etching attack involving fluorine ions. A key result is the observed reversion of the etch selectivity between the initial glassy and partially crystallized parts that evolve after UV exposure and thermal treatment. The crystallized parts were found to be 27 times more soluble than the unexposed glass parts during wet chemical etching. During the plasma etching process, the glassy components dissolve approximately 2.5 times faster than the partially crystalline components. Unlike wet chemical etching, the surfaces of plasma etched photostructured samples showed cone- and truncated-cone-shaped topographies, which supposedly resulted from self-masking effects during plasma etching, as well as a distinct physical contribution from the plasma etching process. The influences of various water species on the etching behaviors of the homogeneous glass and partially crystallized material are discussed based on FTIR-ATR and in relation to the respective etch rates and SNMS measurements.



https://doi.org/10.3390/solids4030014
Baumstark, Alexander; Jibril, Muhammad Attahir; Sattler, Kai-Uwe
Adaptive query compilation in graph databases. - In: Distributed and parallel databases, ISSN 1573-7578, Bd. 41 (2023), 3, S. 359-386

Compiling database queries into compact and efficient machine code has proven to be a great technique to improve query performance and exploit characteristics of modern hardware. Particularly for graph database queries, which often execute the exact instructions for processing, this technique can lead to an improvement. Furthermore, compilation frameworks like LLVM provide powerful optimization techniques and support different backends. However, the time for generating and optimizing machine code becomes an issue for short-running queries or queries which could produce early results quickly. In this work, we present an adaptive approach integrating graph query interpretation and compilation. While query compilation and code generation are running in the background, the query execution starts using the interpreter. When the code generation is finished, the execution switches to the compiled code. Our evaluation of the approach using short-running and complex queries show that autonomously switching execution modes helps to improve the runtime of all types of queries and additionally to hide compilation times and the additional latencies of the underlying storage.



https://doi.org/10.1007/s10619-023-07430-4
Garg, Sharva; Bag, Tanmoy; Mitschele-Thiel, Andreas
Data-driven self-organization with implicit self-coordination for coverage and capacity optimization in cellular networks. - In: IEEE transactions on network and service management, ISSN 1932-4537, Bd. 20 (2023), 2, S. 1153-1169

Coverage and Capacity Optimization (CCO) and Inter-Cell Interference Coordination (ICIC) are two tightly coupled and conflicting Self-Organizing Network (SON) functions that are responsible for ensuring optimal coverage and capacity in any cellular network. While executing currently, these functions may modify the same RF and antenna parameters, resulting in severe performance deteriorations. In this context, a centralized optimization and coordination approach may be impractical considering the large sizes of network clusters and the dynamics involved between the several other defined SON use cases. In this work, an implicitly coordinated and scalable self-organizing architecture is followed such that when a carefully defined multi-objective utility function for CCO-ICIC joint optimization is optimized locally by each RAN node, a desired balance between the two conflicting network targets of coverage and capacity is ensured globally. Pareto analysis of three variants of the proposed Local Multi-Objective KPI (LMO KPI) has been conducted to implicitly coordinate the two SON functions in a distributed self-organized manner. In order to recommend appropriate network configurations dynamically to quickly adapt to altering network environments, two collaborative filtering-based Recommender Systems (RecSys), one using a Deep Autoencoder and another based on Singular Value Decomposition, have been employed along with a neural network regressor to improve recommendations for cold-start scenarios. The two proposed hybrid-RecSys-based SON coordination solutions, while adopting an appropriate Local Multi-Objective KPI (LMO KPI), outperform previous work in coverage by 36% and in capacity by around 2% while reducing power consumption by more than 50%. The study demonstrates that the definition of the LMO KPI is crucial to the performance of this approach. Altogether, the work shows that the adopted self-organization and implicit SON-coordination approach is not only feasible and performant but also scales well if implemented meticulously.



https://doi.org/10.1109/TNSM.2023.3262401
Hofmann, Meike; Gharbi Ghebjagh, Shima; Feng, Yuchao; Fan, Chao; Lemke, Karen; Sinzinger, Stefan
Linearly modulated multi-focal diffractive lens for multi-sheet excitation of flow driven samples in a light-sheet fluorescence microscope. - In: Journal of the European Optical Society, ISSN 1990-2573, Bd. 19 (2023), 1, 26, S. 1-8

Light sheet fluorescence microscope with single light sheet illumination enables rapid 3D imaging of living cells. In this paper we show the design, fabrication and characterization of a diffractive optical element producing several light sheets along a 45˚ inclined tube. The element, which is based on a multi-focal diffractive lens and a linear grating, generates five thin light sheets with equal intensities when combined with a refractive cylindrical lens. The generated uniform light sheets can be applied for the scanning of samples in tubes enabling flow-driven 3-dimensional imaging.



https://doi.org/10.1051/jeos/2023022
Behrens, Arne; Sinzinger, Stefan
2.5D+ plasma etching for a continuously adjustable sidewall angle in SiO2. - In: Optical materials express, ISSN 2159-3930, Bd. 13 (2023), 6, S. 1780-1796

We present a systematic investigation of an SiO2 etching process using a standard fluorocarbon chemistry ICP-RIE etch tool with a cryogenically cooled electrode. Our goal is to enable the control of the SiO2 feature morphology, i.e., the sidewall angle, in order to add a degree of freedom for the design of resonant micro-/nanooptical elements. For such elements as e.g., whispering gallery mode resonators with specific mode profiles, it is essential to maintain low surface roughness. To this end, we investigate a variety of gas compositions. For statistical evaluation, we use a surface response methodology for several parameters and investigate the influence of the substrate temperature on the sidewall angle. Different hypotheses from the literature for the cause of non-anisotropic etch behavior are discussed for our specific case. Various investigations based on the prior hypothesis are presented, which provide more information about the pseudo-isotropic etch profile. Finally, we present two use cases: firstly, a classical anisotropic etch with a high aspect ratio and very low roughness (<1 nm), and secondly, an etch process for the fabrication of whispering gallery mode resonators that confine the light at the bottom of the resonator.



https://doi.org/10.1364/OME.484157
Döring, Nicola; Lehmann, Stephan; Schumann-Doermer, Claudia
Contraception on YouTube, Instagram, and TikTok : a content and quality analysis
Verhütung auf YouTube, Instagram und TikTok : eine Inhalts- und Qualitätsanalyse. - In: Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, ISSN 1437-1588, Bd. 66 (2023), 9, S. 990-999

Hintergrund: Jugendliche und Erwachsene beziehen Informationen über Verhütung zunehmend über soziale Medien. Ziel der Arbeit: Vor diesem Hintergrund ist es Ziel der vorliegenden Studie, erstmals Inhalte und Qualität deutschsprachiger Verhütungsbeiträge auf YouTube, Instagram und TikTok zu untersuchen. Beantwortet werden sollen Forschungsfragen zu Anbieter*innen (F1), Inhalten (F2) und Qualität der Verhütungsbeiträge (F3) sowie zu Publikumsreaktionen (F4). Material und Methoden: Es wurde eine Stichprobe von N= 1000 Verhütungsbeiträgen von YouTube (500), Instagram (250) und TikTok (250) gezogen. Pro Beitrag gingen maximal 20 verhütungsbezogene Kommentare in das Kommentar-Sample ein (N= 12.454). Die Beiträge und Kommentare wurden mittels reliabilitätsgeprüfter Codebücher analysiert. Die Datenanalyse erfolgte mit SPSS. Die Studie ist präregistriert und alle Daten, Materialien und Analyseskripte sind öffentlich verfügbar. Ergebnisse: Es zeigte sich, dass die Verhütungsbeiträge mehrheitlich von Gesundheitslaien stammten (52%), gefolgt von Medienprofis und Gesundheitsprofis (F1). Inhaltlich deckten die Verhütungsbeiträge alle verfügbaren Verhütungsmethoden ab, wobei Pille (69%) und Kondom (40%) dominierten (F2). Nach gängigen Qualitätskriterien zeigten sich deutliche Defizite, wobei im Vergleich YouTube-Videos am besten abschnitten (F3). TikTok-Videos dagegen waren Spitzenreiter bei den Publikumsreaktionen, sie verzeichneten die meisten Views, Likes und Kommentare. Die Kommentarspalten wurden vom Publikum oft genutzt, um eigene Verhütungserfahrungen zu teilen oder Nachfragen zu stellen (F4). Diskussion: Weitere Forschung sowie Praxismaßnahmen sind notwendig, um die Qualität von Verhütungsinformationen in sozialen Medien besser einschätzen und optimieren zu können.



https://doi.org/10.1007/s00103-023-03698-0