Reduction of crystalline defects in III-V thin buffer layers grown on Si(100) and Ge(100) substrates by MOCVD for solar fuels. - Ilmenau : Universitätsbibliothek, 2023. - 1 Online-Ressource (XII, 145 Seiten)
Technische Universität Ilmenau, Dissertation 2023
Die Heteroepitaxie von III-V auf Si und Ge Substraten eignet sich für kostengünstige, qualitativ hochwertige Epitaxieschichten, die eine geeignete Bandlücke für Mehrfachsolarzellen aufweisen. Jedoch ist die III-V-Heteroepitaxie auf diesen Substraten aufgrund von Antiphasengrenzen, die durch polares III-V Wachstum auf den unpolaren Substraten entstehen, eine Herausforderung. Außerdem müssen Kristalldefekte, die sich an der Heterogrenzfläche III-V/Substrate bilden können und dann in den III-V-Schichten die solare Konversionseffizienz erheblich beeinträchtigen, unbedingt vermieden werden. Die vorliegende Arbeit untersucht die Präparation von Si- und Ge-Oberflächen mit wohldefinierten Heterogrenzflächen sowie das nachfolgende Wachstum von GaP- und III-P- Schichten mit geringen Defektdichten mittels metallorganischer chemischer Gasphasenabscheidung, die präzise kontrollierte, auf industriellen Maßstab skalierbare Epitaxie von III-V-Halbleitern mit hoher Reinheit ermöglicht. Für das Wachstum von GaP auf Si wurde die Ausbildung von Doppelstufen auf der Arsen-terminierten Si(100)-Oberfläche und die dazugehörige Dimerorientierung durch Variation der Prozessparameter (Temperatur, Druck, Arsenquelle) genau kontrolliert. Um die Kristallqualität der GaP-Pufferschicht zu verbessern, wurde die Pulsabfolge der Ga- und P-Präkursoren für die Nukleation modifiziert, indem die ersten fünf TEGa-Pulse durch TMAl ersetzt wurden. Die kristallinen Defekte wurden mittels “Electron channeling contrast imaging” (ECCI) untersucht. Die quantitative Analyse der Defekte zeigte, dass bei GaP, das auf einer GaP/AlP Nukleationsschicht gewachsen wurde, im Durchschnitt die Dichte von Durchstoß-versetzungen (engl. threading dislocations, TDs) und Stapelfehlern (engl. stacking faults, SFs) um eine bzw. zwei Größenordnungen reduziert werden konnte, verglichen mit Pufferschichten, die auf einer binären GaP Nukleationsschicht gewachsen wurden. Bei der Heteroepitaxie von III-P/Ge(100) ist ein erster Prozessschritt vor dem eigentlichen Wachstum entscheidend, bei dem die Ge(100):As-Oberfläche dem TBP-Precursor ausgesetzt wird, um die As-Atome durch P-Atome zu ersetzen. Unterschiedliche molare Flüsse des TBP-Precursors während dieses Prozessschritts beeinflussen die chemische Zusammensetzung sowie die Oberflächenrekonstruktion der Ge(100):As-Oberflächen; außerdem wirken sich die molaren Flüsse des TBP-Angebots auf die Bildung von Defekten in der III-P-Schicht aus. Diese Arbeit hat somit gezeigt, dass beim Wachstum von III-V-Verbindungshalbleitern auf Si und Ge eine genau kontrollierte Heterogrenzfläche erforderlich ist, um die hohe Kristallqualität der III-V-Schichten zu erreichen.
https://doi.org/10.22032/dbt.55641
Aushärteüberwachung von Klebstoffen durch luftultraschallinduzierte und geführte Wellen. - Ilmenau, 2023. - 1 Band (verschiedene Seitenzählung)
Technische Universität Ilmenau, Dissertation 2023
Klebstoffsysteme finden zunehmend Anwendung in den verschiedensten Industriesegmenten und substituieren oder ergänzen oftmals konventionell angewandte Verbindungsverfahren wie das Schweißen und Nieten. Gleichzeitig bestehen zahlreiche, genormte Prüfverfahren, um die Aushärtung von Klebstoffen zu charakterisieren. Diese beschränken sich auf die Untersuchung von Probenkleinstmengen im Labor auf Basis von z. B. rheologischen und kalorimetrischen Verfahren. Die dabei erzielten Ergebnisse können aufgrund ungleicher Rahmenbedingungen nicht direkt auf die Gegebenheiten in einem industriellen Produktionsumfeld übertragen werden. Die zu Grunde liegenden Ursachen sind vielfältig. In den meisten Fällen ist etwa ein direkter Messzugang zum Klebstoff bedingt durch die vorhandenen Fügepartner nicht gegeben und Umgebungsbedingungen wie Temperatur und Luftfeuchtigkeit weichen gleichermaßen wie die betrachtete Menge an Klebstoff von den genannten Laborprüfungen ab. Im industriellen Umfeld kaum etabliert, aber im Stand der Technik und Wissenschaft beschrieben, sind hingegen zerstörungsfreie Methoden zur Prüfung von applizierten Klebstoffen. Zu diesen gehören beispielsweise die Terahertz-, berührende Ultraschall- und Kernspinresonanztechnik. Wesentliche Nachteile wie eine nicht berührungslose Arbeitsweise, die die Untersuchung klebriger Oberflächen behindert, eine geringe Eindringtiefe, aus der Informationen gewonnen werden können, einschränkende Anforderungen an die elektrische Leitfähigkeit der untersuchbaren Materialsysteme sowie letztlich hohe Systemkosten sind Gründe für eine geringe Anwenderakzeptanz. Diesen Verfahren steht ein neuer Prüfansatz auf Basis mittels Luftultraschall induzierter, geführter Wellen entgegen. Dieser erlaubt eine verhältnismäßig kostengünstige, wegintegrale Aushärteüberwachung von Klebstoffen über lange Strecken hinweg, ohne einen direkten Zugang zum Klebstoff zu erfordern. Die vorliegende Dissertation erforscht das Messprinzip und die damit verbundenen Vor- und Nachteile, demonstriert unmittelbar die Verfahrenseignung durch Betrachtung unterschiedlicher Klebstoffsysteme, untersucht den Einfluss wesentlicher Prüfrahmenbedingungen, zeigt Anwendungsmöglichkeiten sowie erkannte Limitationen auf und bietet anschließend Umgehungsstrategien zur Überwindung der genannten Limitationen z. B. durch Anwendung von sogenannten Pulskompressionsmethoden an.
A systematic approach for controlling electrodeposition based on studies of an acidic copper electrolyte. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (122 Seiten)
Technische Universität Ilmenau, Dissertation 2022
Bekannte akademische Erkenntnisse der Elektrochemie, wie die Butler-Volmer Kinetik, und deren Veränderungen ermöglichen unter anderem einen genaueren Einblick in den Mechanismus der Metallabscheidung. Aufgrund eines fehlenden Bindegliedes wurden diesen akademischen Erkenntnissen keine oder nur wenig Beachtung in der industriellen Prozessüberwachung geschenkt. Stattdessen wird die Hull-Zell-Abscheidung als indirekter Ansatz für die Analyse des Abscheidungsverhaltens benutzt. Durch die Entwicklung einer Methode, die die Randelemente-Methode als Grundlage für die Simulation verwendet, werden die kinetischen Parameter - die Austauschstromdichte j0 und der Transferkoeffizient α - aus experimentellen Hull-Zellen-Abscheidungen gewonnen (Rückwärtsbestimmung). Dieser Ansatz wird validiert, indem zyklische voltammetrische Daten eines sauren Kupferelektrolyten in die Simulation eingesetzt und die simulierten Hull-Zellkurven mit experimentellen Kurven verglichen werden. Darüber hinaus wird der Einfluss von Additiven auf das kinetische Verhalten untersucht, ohne die visuellen Informationen und die Möglichkeiten zu verlieren, die strukturellen und physikalischen Eigenschaften der Metallabscheidung zu erhalten. Dieser Ansatz kann zu einem tieferen elektrochemischen Verständnis von industriell benutzten Elektrolyten führen.
https://doi.org/10.22032/dbt.55223
Novel reactor design and method for atmospheric pressure chemical vapor deposition of micro and nano SiO2-x films in photovoltaic applications. - Ilmenau : Universitätsverlag Ilmenau, 2022. - 241 Seiten. - (Werkstofftechnik aktuell ; Band 26)
Technische Universität Ilmenau, Dissertation 2021
ISBN 978-3-86360-263-5
In dieser Arbeit wurden ein kostengünstiges Verfahren und eine Anlage zur chemischen Gasphasenabscheidung von SiO2-x-Schichten bei Atmosphärendruck (atmospheric pressure chemical vapor deposition, APCVD) im Labormaßstab entwickelt. Dabei kommt die Hydrolyse von SiCl4 bei Raumtemperatur zum Einsatz. Der Anwendungsschwerpunkt für die SiO2-x-Schichten liegt im Bereich Photovoltaik (PV), speziell kristalline Siliziumsolarzellen. Dort ist die Reduzierung der Herstellungskosten von großer Bedeutung. Im Vergleich zu den bekannten Verfahren für die chemische Gasphasenabscheidung senkt der gewählte Ansatz die Kosten für die SiO2-x-Schichtabscheidung deutlich. Hauptziele der Entwicklungsarbeit waren einfaches Reaktordesign, geringe Sicherheitsmaßnahmen und Wartungszeiten, die Vermeidung von Gasphasenreaktionen und Staubbildung, eine für PV-Anwendungen geeignete Schichtqualität sowie die Möglichkeit, die Abscheideraten in einem weiten Bereich zu variieren. Es wurde ein neuartiger APCVD-Reaktor aus Polycarbonat und thermoplastischen Materialien aufgebaut, mit dem die SiO2-x-Schichten heterogen auf der Substratoberfläche unter Eliminierung von Gasphasenreaktionen synthetisiert werden können. Die Abscheiderate wurde in Abhängigkeit von der Konzentration der Rektanden im Trägergas untersucht. Dank der Entwicklung geeigneter Verdampferkonfigurationen für die Raktenden SiCl4 und H2O können deren Konzentrationen in den inerten Trägergasen vor der Durchmischung in einem Injektor genau eingestellt werden. Die Schlüsselfaktoren für die Kontrolle und Steuerung dieser Konzentrationen sind die Temperaturen und die Volumenströme der Reaktandengase in den Verdampern und im Injektor. Das APCVD-Injektordesign wurde mit Hilfe numerischer Strömungsmechanik optimiert. Für die Simulationen wurde die Software ANSYS verwendet. Als Ergebnis der Optimierung können die SiO2-x-Schichten auf einer Substratfläche von 156 × 156 mm2 gleichmäßig abgeschieden werden. Das ist die derzeitige Standardgröße industriell hergestellter kristalliner Siliziumsolarzellen. Die Design-Studien hatten auch das Ziel, einen Injektor zu entwickeln, der ohne bewegte Teile für eine homogene Durchmischung der Gase sorgt. Das letztendlich geeignete Design wurde aus thermoplastischen Werkstoffen mit Hilfe von 3D-Druck im Schmelzschichtungsverfahren hergestellt. Ferner wurde die Reduzierung der Gasphasen-reaktion in der Nähe des Substrats durch Einstellung des Molverhältnisses der Reaktanden und eine geeignete Führung der Injektorabgase erreicht. Die Kondensation von Reaktanden und die parasitäre Oxidabscheidung auf den Innenflächen des APCVD-Injektors wurden erfolgreich vermieden, ohne dass ein bei Inline-APCVD-Injektoren üblicher Gasvorhang erforderlich ist. Die resultierenden APCVD- SiO2-x-Schichten wurden hinsichtlich ihrer chemischen und optischen Eigenschaften sowie ihrer Zusammensetzung umfassend charakterisiert, um ihre Qualität und Kompatibilität mit PV- und anderen potenziellen Anwendungen zu beurteilen. Dabei zeigte sich, dass die Schichten nahezu stöchiometrisch sind. Deswegen wurde die Bezeichnung SiO2-x anstelle von SiO2 gewählt. Die Abscheiderate wurde in Abhängigkeit von den Volumenströmen, der Substrattemperatur und dem Molverhältnis der Reaktanden untersucht. Die Variation der Substrattemperatur nahe der Raumtemperatur und des Molverhältnisses der Reaktanden führt zu einer großen Bandbreite von Abscheideraten und Materialeigenschaften. Die Hydroxylgehalte in den SiO2-x-Schichten wurden bei verschiedenen Abscheidebedingungen bestimmt. Es wurde gefunden, dass die Kalzinierung für 1 min bei relativ niedrigen Temperaturen kleiner 300 ˚C die Hydroxylgruppen in den abgeschiedenen Filmen deutlich reduziert. Die Nachteile der Kalzinierung bei hohen Temperaturen über 500 ˚C nach der Schichtabscheidung wurden ebenfalls untersucht. Optimierte Werte für das Molverhältnis der Reaktanden, der Substrattemperatur sowie der Kalzinierungstemperatur und -dauer wurden gefunden, um APCVD-SiO2-x-Schichten ohne mikroskopisch kleine Löcher und Risse zu erhalten, so dass sie für die verschiedenen PV-Anwendungen geeignet sind. Verschiedene kostengünstige Prozesse für die Herstellung von kristallinen Silizium-Solarzellen unter Verwendung der APCVD SiO2-x-Schichten wurden entwickelt. So konnten nach einseitiger SiO2-x-Beschichtung und einer 1-minütigen Kalzinierung einkristalline Si-Wafer mit alkalischer Ätzlösung einseitig texturiert werden. Eine weitere Anwendung ist die Verwendung von APCVD SiO2-x als Maske für die lokale galvanische Abscheidung des Vorderseiten-Metallkontakts auf Solarzellen mit Heteroübergang. Dabei wurde eine Ag-Paste in Form eines linienförmigen Kontakts mittels Siebdruck auf das transparente leitfähige Oxid (transparent conducting oxide, TCO) der Solarzellen dünn aufgebracht und nach einer ganzflächigen APCVD SiO2-x-Beschichtung der Solarzell-Vorderseite mit Cu galvanisch verstärkt. In einer anderen Prozesssequenz wurde eine Polymerpaste in Form des späteren linienförmigen Metallkontakts mittels Siebdruck auf das Vorderseiten-TCO der Solarzellen aufgebracht und nach der ganzflächigen Beschichtung mit APCVD-SiO2-x mit Lösungsmittel wieder entfernt. In die entstandenen lokalen Öffnungen der SiO2-x-Maske erfolgte die lokale galvanische Metallabscheidung direkt auf dem TCO. In der letzten untersuchten Anwendung wurden APCVD-SiO2-x-Schichten als Schutz vor parasitärer galvanischer Metallabscheidung auf der Vorderseite von einkristallinen pn-Solarzellen sowie auf der Rückseite von multikristallinen bifazialen pn-Solarzellen untersucht.
Einfluss von Carbonsäuren auf den Abscheidungsprozess von Chrom aus Chrom(III)-Elektrolyten. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (xi, 115, LXVII Seiten)
Technische Universität Ilmenau, Dissertation 2022
Der Ersatz von hexavalenten Chromverbindungen in der galvanischen Industrie ist seit der Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH-Verordnung) der Europäischen Union ein zentrales Thema. In der dekorativen Verchromung ist die Substitution durch adäquate Alternativen sehr vielversprechend. Allerdings ist der Ersatz von CrVI-Verbindungen in der funktionellen Verchromung herausfordernd, denn Chromschichten aus trivalenten und hexavalenten Elektrolyten unterscheiden sich bspw. in der Farbe und Korrosionsbeständigkeit. In dieser Arbeit wird die Wirkungsweise verschiedener organischer Säuren auf die Abscheidung von dickeren Chromschichtdicken (> 1 µm) untersucht. Wichtige Instrumente, um die Reaktion und die Chromabscheidung zu untersuchen, sind zum einen die Hochleistungsflüssigkeits-Chromatographie (HPLC, engl. High performance liquid chromatography), elektrochemische Quarzmikrowaage (EQCM), Polarographie (DPP, engl. differential pulse polarography), die Zyklovoltammetrie (CV, engl. Cyclic voltammetry) und zum anderen Querschliffanalysen. Die Schichtcharakterisierung erfolgte über die Rasterelektronenmikroskopie (REM). Die Ergebnisse der Untersuchungen zeigten, dass Reaktionsgeschwindigkeit, Abscheideraten und der daraus resultierende Schichtaufbau, von der Art und Konzentration der Carbonsäuren abhängen. Es konnten Aussagen über die Wirkung der Carbonsäuren als Komplexbildner getroffen und mit dem Chelat-Effekt erklärt werden. Mit einer optimalen Elektrolytzusammensetzung konnten Schichtdicken von 25 bis zu 85 µm abgeschieden werden. Möglichkeiten, die eine gleichmäßige, rissarme Abscheidung unterstützen, wurden untersucht. Ein abschließender Vergleich der Chromschichten aus einem industriell genutzten sechswertigen Hartchromverfahren und dem hier beschriebenen dreiwertigen Elektrolyten zeigt gute Übereinstimmungen. Lediglich der Korrosionsschutz der Chromschicht aus dem trivalenten Elektrolyten ist nur mit Hilfe einer zusätzlichen Nickelschicht zu gewährleisten.
https://doi.org/10.22032/dbt.53060
Elektrochemische Reduktion von Niob-Halogeniden in ionischen Flüssigkeiten. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (VIII, 98 Blätter, Blatt IX-LVII)
Technische Universität Ilmenau, Dissertation 2022
Metallische Überzüge aus Niob bieten aufgrund ihrer besonderen chemischen, thermischen und mechanischen Stabilität vor allem auf kostengünstigen Grundwerkstoffen, die extremen korrosiven und abrasiven Belastungen ausgesetzt sind, ein breites Anwendungsspektrum. Bis heute ist jedoch ein hoher verfahrenstechnischer Aufwand erforderlich, um haftfeste und hochreine Niob-Schichten in Niederdruck-Prozessen aus der Gasphase herzustellen. Elektrochemische Prozesse bieten eine kostengünstige Alternative, wobei die Reaktivität von Niob sowie das negative Standardpotential der meisten Niob-Reduktionsreaktionen den Einsatz wässriger Medien ausschließt. Die ionischen Flüssigkeiten (ILs) ermöglichen, durch ihre große elektrochemische und thermische Stabilität diese Lücke zu schließen und wurden daher als Medium für die elektrochemische Reduktion von Niob-Halogeniden intensiv untersucht. Im Rahmen meiner Arbeit wurden die Niob-Halogenide NbF5, NbCl5, NbBr5 und Nb(CH3cp)2Cl2 in vier ILs mit zyklischen Voltammetrie (CV), differentieller Pulsvoltammetrie (DPV), Infrarot- und Raman-Spektroskopie hinsichtlich ihrer Eignung als Elektrolyte untersucht. In Kombination mit potentiostatischen Abscheidungen zeigte sich, dass Niob-basierte Schichten abgeschieden werden konnten, dafür aber eine gute Löslichkeit des Niob-Halogenids, ein geringer Wassergehalt sowie eine erhöhte Temperatur des Elektrolyten essentiell sind. Analysen des Reduktionsmechanismus mit der rotierenden Ring-Scheiben-Elektrode (RRDE) belegen chemische Nebenreaktionen die auf Kom- und Disproportionierung der Niob-Spezies sowie Zersetzung der IL zurückgeführt werden. Mit Hilfe der elektrochemischen Quarzmikrowaage (EQCM) wurde die Einlagerung dieser Zersetzungsprodukte bestätigt. Die abgeschiedenen Schichten wurden mit Rasterelektronenmikroskopie (REM), energie-dispersiver Röntgenspektroskopie (EDX), Röntgenfluoreszenzanalyse (RFA), Photoelektronen-spektroskopie (XPS) sowie Röntgendiffraktometrie (XRD) charakterisiert. Diese Schichten weisen etwa 25 At.-% Niob auf. Die restlichen 75 At.-% sind Fremdelemente wie z.B. C, N, O, F, S, Cl bzw. Br, die auf Rückstände des Elektrolyten und der eingelagerten IL-Zersetzungsprodukte zurückgeführt werden. Die Niob-Spezies wurde nicht vollständig zum Metall reduziert und liegt in röntgenamorphen Verbindungen wie NbC, NbO bzw. gemischte NbC1-xOx (mit x ≤ 0,2) sowie NbO2 und Nb2O5 vor. NbCl5 in 1-Butyl-1-methylpyrrolidinium trifluoromethansulfonat ([BMP][OTf]) liefert die dicksten und homogensten Schichten und ist damit das aussichtsreichste System für die Niob-Reduktion. Die Schichteigenschaften können durch Substratvorbehandlung, Additiveinsatz, gepulste Potentialführung sowie Tempern weiter verbessert werden.
https://doi.org/10.22032/dbt.52026
Machine learning Modell für die Abtragsvorhersage in der Roboter-Glaskeramik-Politur. - Ilmenau : Universitätsverlag Ilmenau, 2022. - 1 Online-Ressource (xxv, 162 Seiten, Seite xxvii-lx). - (Werkstofftechnik aktuell ; Band 24)
Technische Universität Ilmenau, Dissertation 2022
Im 21. Jahrhundert gehören optische Systeme zu den Schlüsseltechnologien und spielen eine entscheidende Rolle im technischen Fortschritt. Hochgenaue optische Linsen finden sich u. a. in Astrospiegeln, Lasergyroskopen oder Lithographie-Linsen und die Anforderungen an Stückzahl und Qualität steigen kontinuierlich. Einer der letzten Prozessschritte in der Fertigungskette von Glas Hochleistungsoptiken ist in der Regel die Politur. Von diesem Prozessschritt hängt maßgeblich die Bauteilqualität ab. Trotz langer Tradition und Verwendung in der Industrie herrscht immer noch kein umfassendes Prozessverständnis. Zwar sind empirische Parametersätze vorhanden, jedoch gibt es keine Erkenntnis, inwiefern sich eine Änderung einzelner Parameter auf den Materialabtrag auswirkt. Während zahlreiche Untersuchungen empirische Prozessmodelle betrachteten, blieb der Einsatz von datengetriebenen Poliermodellen bislang weitgehend unbeachtet. Ziel dieser Arbeit ist daher die Entwicklung eines datengetriebenen Poliermodells für die Robotergestützte-Politur von Optiken. Durch den Einsatz von Sensoren am Bearbeitungskopf werden alle relevanten Prozessparameter aufgezeichnet. Durch Datenanalyse können Anomalien und Muster im Prozess detektiert und darauf reagiert bzw. für weitere Analysen genutzt werden. Des Weiteren wird auf Grundlage der Daten ein maschinenlernendes Modell zur Vorhersage von Materialabtrag auf gekrümmten Flächen erstellt und validiert. Das vorliegende Machine learning Modell bildet den betrachteten Polierprozess ab und Einflüsse auf diesen werden durch den Sensoreinsatz abgebildet. Das Modell erreicht eine Vorhersagengenauigkeit des Abtrages von 99,22 % (R2-Wert), welches bei Prozessvorhersagen als sehr gut bewertet wird.
https://doi.org/10.22032/dbt.52077
Grundlagenuntersuchung zur ultraschallunterstützten Aufbautechnik für Elektronik. - Ilmenau, 2022. - 121 Blätter
Technische Universität Ilmenau, Dissertation 2022
Die Einpresstechnik ist ein gut entwickelter Prozess, um eine elektrische Kontaktierung zwischen Pin und Leiterplatte herzustellen. Ein Vorteil der Einpresstechnik ist das Herstellen der Verbindung ohne weitere Hilfsmittel wie Lotpaste oder Wärme. Nachteile des Verfahrens sind zum Teil hohe Einpresskräfte, die zu Beschädigungen an der Leiterplatte führen können oder die Verwendung von zusätzlichen Beschichtungen, um ausreichend hohe Festigkeiten zu erzielen. Im Rahmen der vorliegenden Arbeit wird ein neuer Prozess, ultraschallunterstützte Einpresstechnik, untersucht. Dabei wird die Leiterplatte während oder nach dem Einpressen mit Ultraschall angeregt. Das verwendete Materialsystem Kupfer- bzw. Aluminium-basierter Pin und Kupfer-Hülse weist keine zusätzliche metallische Beschichtung auf. Es werden verschiedene Einflussfaktoren des Prozesses auf Einpresskraft, Festigkeit und Qualität der Verbindungen untersucht. Der Prozess wird weiterentwickelt, um eine Reproduzierbarkeit der Ergebnisse zu gewährleisten und die Prozessparameter werden optimiert. Weiterhin wird eine neue geeignete Pingeometrie entwickelt und ihr Verhalten mit einer flexiblen Pingeometrie verglichen. Der Wirkmechanismus des Ultraschalls wird anhand der Verformung der Fügezone und Veränderungen im Werkstoff erläutert. Zu weiteren Erklärung werden statistische und thermische Modelle aufgestellt. Damit ist eine Voraussage der Auspresskraft und der Temperatur in der Fügezone möglich.
Optimierung der äußeren Druckbedingungen auf Li-Ionen Zellen zur Erhöhung der Lebensdauer. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (VI, 138 Seiten)
Technische Universität Ilmenau, Dissertation 2022
Li-Ionen Zellen dehnen sich während des Ladens aufgrund von Volumenänderungen der Aktivmaterialien bei der Lithium-Interkalation reversibel aus. Zusätzlich führen Alterungsmechanismen der Anode zu einem signifikanten und irreversiblen Wachstum der Zellen. Da die Zellen für ihren Einsatz in Elektrofahrzeugen in Modulen verspannt werden, führt diese Ausdehnung zu einem Anstieg des Drucks im Modul. Sowohl die Performance als auch die Alterung der Zellen sind abhängig vom äußeren Druck. Die Wechselwirkungen von Modulverspannung, Druckentwicklung und Alterung sind jedoch noch weitestgehend unbekannt, da in der Literatur bisher keine systematische Untersuchung von realistischen mechanischen Druckbedingungen durchgeführt wurde. Im Rahmen dieser experimentellen Arbeit wurden die Effekte der Modulsteifigkeit und der initialen Verspannung von Zellen auf die zyklische und kalendarische Alterung, das Zelldickenwachstum und die Druckentwicklung im Modul anhand von drei unterschiedlichen Zelltypen untersucht, die für den Einsatz in Elektrofahrzeugen entwickelt wurden. Auf Basis der statistischen Versuchsplanung konnten die Effekte modelliert und hinsichtlich ihrer statistischen Signifikanz bewertet werden. Im Anschluss wurden die dominanten Alterungsmechanismen und die limitierenden Alterungseffekte im Rahmen einer elektrochemischen Charakterisierung und Post-Mortem-Analyse identifiziert. Den größten Effekt auf die Druckentwicklung im Modul hat die Modulsteifigkeit, ein Einflussfaktor, der bisher in der Literatur weitestgehend vernachlässigt wurde. Der Einfluss der initialen Verspannung hängt stark von den mechanischen Eigenschaften der Zelle ab. Alle drei Zelltypen zeigen druckabhängige Alterungseffekte und -mechanismen, wie z. B. Kathoden-Aktivmaterialverluste aufgrund von Partikelbrüchen, eine zunehmend inhomogene Alterung oder Li-Plating an den Rändern der Anode. Im letzten Schritt wurde das mechanische Moduldesign hinsichtlich der volumetrischen Energiedichte über die Lebensdauer optimiert. Im Rahmen einer experimentellen Optimierung wurde der Einfluss des Designs von Pufferelementen auf die volumetrische Energiedichte bei zyklischer Alterung untersucht und ein optimales Design abgeleitet.
https://doi.org/10.22032/dbt.52195
Preparation and characterization of cuprous oxide for improved photoelectrochemical performance. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (VI, 106 Seiten)
Technische Universität Ilmenau, Dissertation 2022
Die Photoelektrochemische (PEC) Wasserspaltung stellte eine nachhaltige und saubere Methode dar, um Wasserstoff zu erzeugen, ohne auf fossile Brennstoffe angewiesen zu sein. Der P-Typ Cu2O-Halbleiter ist ein vielversprechender Kandidat für die Verwendung als Photokathodenmaterial in Bezug auf Kosten, Verfügbarkeit, Lichtabsorption und Energiebandposition. Ein neuartiges und kostengünstiges Herstellungsverfahren für hochporöse Strukturen (55-80 Poren/mm2) von Cu2O-Photokathoden mit verbesserter PEC-Leistung unter ausschließlicher Verwendung der elektrochemischen Abscheidung wird vorgestellt. Dieses Verfahren beinhaltet drei Schritte, um ein stabiles und hochporöses Cu-Metallgerüst als Substrat für die Cu2O-Schichten herzustellen. Im ersten Schritt wurde ein Abscheideprozess unterstützt durch die dynamische Entwicklung von Wasserstoff-Blasen entwickelt, um poröse Cu-Strukturen mit feinen Porennetzwerken herzustellen. Die porösen Cu-Strukturen wurden durch Abscheidung homogener und kompakter Cu-Schichten auf den fein verästelten Porenwänden mechanisch verstärkt. Da die poröse Cu-Struktur nicht vollständig verstärkt war, wurde in einem dritten Schritt die teilweise verstärkte Struktur mit Hilfe von Ultraschall vom planaren Cu-Substrat abgelöst, um ein stabiles freistehendes poröses Netzwerk mit röhrenförmigen Durchgangsporen zu erhalten. Die Porengröße kann durch Veränderung der Abscheidezeit während des ersten Herstellungsschrittes leicht eingestellt werden. Cu2O-Schichten mit Dicken zwischen ˜0,5 und ˜3 [my]m wurden auf den freistehenden porösen Cu-Schichten durch Variation der Abscheidezeit elektrochemisch hergestellt. Die PEC-Wasserspaltung der Cu2O-Photokathoden wurde unter gepulser simulierter AM 1,5-Beleuchtung in einem wässrigen Elektrolyten aus 0,5 M Na2SO4 (pH 6) untersucht. Es wurde festgestellt, dass die Proben mit kleineren Poren den höchsten Photostrom von -2,75 mA cm-2 bei 0 V vs. RHE aufwiesen, gefolgt von -2,25 mA cm-2 für die Proben mit großen Poren, während ein niedriger Dunkelstrom beibehalten wurde. Diese Photoströme sind 120 % bzw. 80 % höher als die PEC-Leistung einer Cu2O-Schicht auf planarem Cu-Substrat, die mit den gleichen Abscheideparametern hergestellt wurde. Die hohe Leistung wird auf die vergrößerte Oberfläche durch die poröse Struktur, die dünne und homogene Bedeckung der Cu2O-Schicht mit kleiner Korngröße und die höheren Lochkonzentrationen zurückgeführt, wie die Mott-Schottky-Analyse zeigte. Die weitere Auswertung der freistehenden porösen Cu2O-Proben zeigte, dass sie eine direkte optische Durchlässigkeit von 14 % für die feinporigen Proben bzw. 23 % für die grobporigen Proben besitzen ([Lambda] = 400-800 nm). Die Herstellung des transluzenten Metallgerüsts mit Hilfe des elektrochemischen Abscheidungsprozesses wurde bisher nicht berichtet, sodass neue Innovationen für verschiedene Anwendungen, insbesondere im Bereich der Energiematerialien, ermöglicht werden.
https://doi.org/10.22032/dbt.51881