Zeitschriftenaufsätze und Buchbeiträge

Anzahl der Treffer: 1443
Erstellt: Thu, 25 Apr 2024 23:03:37 +0200 in 0.0874 sec


Liang, Zhengchen; Wang, Dong; Ziegler, Mario; Hübner, Uwe; Xie, Peng; Ding, Qi; Zhang, Hong; Wang, Wei
Coupling-induced tunable broadband superradiance in 2D metal-dielectric-metal nanocavity arrays. - In: Laser & photonics reviews, ISSN 1863-8899, Bd. 16 (2022), 11, 2200393, S. 1-8

Subradiance/superradiance, cooperative effects causing suppressed/enhanced radiative decay, are of particular interest in plasmonic systems as they play a very important role in modulating dampings and optical properties of resonant systems. However, subradiance/superradiance are generally limited in narrow spectral range with inaccessible tunability. Realizing broadband subradiant and superradiant plasmon modes with flexible tuning is still challenging. Here, a 2D periodic multilayer metal-dielectric-metal (MDM) nanostructure is rationally designed and fabricated to realize a tunable superradiant mode over a broad visible range. Angle-resolved spectroscopy combined with full quantum calculations reveal a sufficient hybridization of delocalized guided plasmons with localized plasmons and a plasmonic cavity mode, leading to an emissive superradiant hybrid mode over a broadband visible range, which can be readily tuned by controlling the spectral three-mode overlap. Greatly shortened polariton lifetimes down to 4 fs are achieved as direct consequence of the Rabi phases and considerable incoherent coupling strengths between interacting subsystems. Such a control of plasmon damping by cooperative mode interactions paves the way toward efficient manipulation of light emission for applications requiring bright, fast-emitting photon sources.



https://doi.org/10.1002/lpor.202200393
Zare Pour, Mohammad Amin; Romanyuk, Oleksandr; Moritz, Dominik Christian; Paszuk, Agnieszka; Maheu, Clément; Shekarabi, Sahar; Hanke, Kai Daniel; Ostheimer, David; Mayer, Thomas; Hofmann, Jan Philipp; Jaegermann, Wolfram; Hannappel, Thomas
Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy. - In: Surfaces and Interfaces, ISSN 2468-0230, Bd. 34 (2022), 102384, S. 1-7

Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm -50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2 × 2)/c(4 × 2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [011¯] direction due to PP dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P 2p spectrum to PP bonds on a surface. We found an upward surface band bending on the (2 × 2)/c(4 × 2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.



https://doi.org/10.1016/j.surfin.2022.102384
Schneckenburger, Max; Höfler, Sven; Garcia, Luis; Almeida, Rui; Börret, Rainer
Material removal predictions in the robot glass polishing process using machine learning. - In: SN applied sciences, ISSN 2523-3971, Bd. 4 (2022), 1, 33, insges. 14 S.

Robot polishing is increasingly being used in the production of high-end glass workpieces such as astronomy mirrors, lithography lenses, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With increasing optic sizes, the stability of the polishing process becomes more and more important. If not empirically known, the optical surface must be measured after each polishing step. One approach is to mount sensors on the polishing head in order to measure process-relevant quantities. On the basis of these data, machine learning algorithms can be applied for surface value prediction. Due to the modification of the polishing head by the installation of sensors and the resulting process influences, the first machine learning model could only make removal predictions with insufficient accuracy. The aim of this work is to show a polishing head optimised for the sensors, which is coupled with a machine learning model in order to predict the material removal and failure of the polishing head during robot polishing. The artificial neural network is developed in the Python programming language using the Keras deep learning library. It starts with a simple network architecture and common training parameters. The model will then be optimised step-by-step using different methods and optimised in different steps. The data collected by a design of experiments with the sensor-integrated glass polishing head are used to train the machine learning model and to validate the results. The neural network achieves a prediction accuracy of the material removal of 99.22%.



https://doi.org/10.1007/s42452-021-04916-7
Koch, Juliane; Liborius, Lisa; Kleinschmidt, Peter; Weimann, Nils; Prost, Werner; Hannappel, Thomas
Electrical properties of the base-substrate junction in freestanding core-shell nanowires. - In: Advanced materials interfaces, ISSN 2196-7350, Bd. 9 (2022), 30, 2200948, S. 1-8

Well-defined hetero-interfaces with controlled properties are crucial for any high-performance, semiconductor-based, (opto-)electronic device. They are particularly important for device structures on the nanoscale with increased interfacial areas. Utilizing a ultrahigh-vacuum based multi-tip scanning tunneling microscope, this work reveals inadvertent conductivity channels between the nanowire (NW) base and the substrate, when measuring individual vertical core-shell III-V-semiconductor NWs. For that, four-terminal probing is applied on freestanding, epitaxially grown coaxial p-GaAs/i-GaInP/n-GaInP NWs without the need of nanoscale lithography or deposition of electrical contacts. This advanced analysis, carried out after composition-selective wet chemical etching, reveals a substantially degraded electrical performance of the freestanding NWs compared to detached ones. In an electron beam induced current mode of the nanosensor, charge separation at the substrate-to-NW base junction is demonstrated. An energy dispersive X-ray spectroscopic linescan shows an unintended compositional change of the epitaxially grown NW toward the planar layers caused by different incorporation mechanisms of Ga and In at the NW base. This approach provides direct insight into the NW-substrate transition area and leads to a model of the conductivity channels at the NW base, which should, in principle, be considered in the fabrication of all NW heterostructures grown bottom-up on heterogeneous substrate materials.



https://doi.org/10.1002/admi.202200948
Quispe, Roger; Torres, Carlos; Eggert, Lara; Ccama, Gianella A.; Kurniawan, Mario; Hopfeld, Marcus; Zárate Moya, José Luis; Camargo, Magali K.; Rosenkranz, Andreas; Acosta, Julio A.; Bund, Andreas; Schaaf, Peter; Grieseler, Rolf
Tribological and mechanical performance of Ti2AlC and Ti3AlC2 thin films. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 24 (2022), 10, 2200188, S. 1-11

Mn+1AXn (MAX) phases are novel structural and functional materials with a layered crystal structure. Their unique properties such as good machinability, high electrical conductivity, low friction, and corrosion resistance are appealing for many engineering applications. Herein, Ti2AlC and Ti3AlC2 MAX thin films are synthesized by magnetron sputtering and subsequent thermal annealing. A multilayer approach is used to deposit single-element nanolayers of titanium, aluminum, and carbon onto silicon substrates with a double-layer-diffusion barrier of SiO2 and SixNy. Ti2AlC and Ti3AlC2 thin films (thickness ≈500 nm) are formed via rapid thermal annealing and verified by X-Ray diffraction. Nanoindentation tests show hardness values of about 11.6 and 5.3 GPa for Ti2AlC and Ti3AlC2, respectively. The tribological behavior of the Ti2AlC and Ti3AlC2 thin films against AISI 52100 steel balls under dry sliding conditions is studied using ball-on-flat tribometry. The resulting coefficient of friction (CoF) for Ti2AlC and Ti3AlC2 ranges between 0.21-0.42 and 0.64-0.91, respectively. The better tribological behavior observed for Ti2AlC thin films is ascribed to its smaller grain size, reduced surface roughness, and higher hardness.



https://doi.org/10.1002/adem.202200188
Moritz, Dominik Christian; Ruiz Alvarado, Isaac Azahel; Zare Pour, Mohammad Amin; Paszuk, Agnieszka; Frieß, Tilo; Runge, Erich; Hofmann, Jan Philipp; Hannappel, Thomas; Schmidt, W. Gero; Jaegermann, Wolfram
P-terminated InP (001) surfaces: surface band bending and reactivity to water. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 41, S. 47255-47261

Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by low-temperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.



https://doi.org/10.1021/acsami.2c13352
Mohr-Weidenfeller, Laura; Kleinholz, Cathleen; Müller, Björn; Gropp, Sebastian; Günther-Müller, Sarah; Fischer, Michael; Müller, Jens; Strehle, Steffen
Thermal analysis of the ceramic material and evaluation of the bonding behavior of silicon-ceramic composite substrates. - In: Journal of micromechanics and microengineering, ISSN 1361-6439, Bd. 32 (2022), 10, 105004, S. 1-9

https://doi.org/10.1088/1361-6439/ac8686
Mathew, Sobin; Narasimha, Shilpashree; Reiprich, Johannes; Scheler, Theresa; Hähnlein, Bernd; Thiele, Sebastian; Stauffenberg, Jaqueline; Kurtash, Vladislav; Abedin, Saadman; Manske, Eberhard; Jacobs, Heiko O.; Pezoldt, Jörg
Formation and characterization of three-dimensional tetrahedral MoS2 thin films by chemical vapor deposition. - In: Crystal growth & design, ISSN 1528-7505, Bd. 22 (2022), 9, S. 5229-5238

A method to synthesize the three-dimensional arrangement of bulk tetrahedral MoS2 thin films by solid source chemical vapor deposition of MoO3 and S is presented. The developed synthesizing recipe uses a temperature ramping with a constant N2 gas flow in the deposition process to grow tetrahedral MoS2 thin film layers. The study analyses the time-dependent growth morphologies, and the results are combined and presented in a growth model. A combination of optical, electron, atomic force microscopy, Raman spectroscopy, and X-ray diffraction are used to study the morphological and structural features of the tetrahedral MoS2 thin layers. The grown MoS2 is c-axis oriented 2H-MoS2. Additionally, the synthesized material is further used to fabricate back-gated field-effect transistors (FETs). The fabricated FET devices on the tetrahedral MoS2 show on/off current ratios of 10^6 and mobility up to ∼56 cm^2 V^-1 s^-1 with an estimated carrier concentration of 4 × 10^16 cm-3 for VGS = 0 V.



https://doi.org/10.1021/acs.cgd.2c00333
Dang, Thien Thanh; Schell, Juliana; Boa, Andrea González; Lewin, Daniil; Marschick, Georg; Dubey, Astita; Escobar-Castillo, M.; Noll, Cornelia; Beck, Reinhard; Zyabkin, Dmitry; Glukhov, Konstantin E.; Yap, Ian Chang Jie; Mokhles Gerami, Adeleh; Lupascu, Doru C.
Temperature dependence of the local electromagnetic field at the Fe site in multiferroic bismuth ferrite. - In: Physical review, ISSN 2469-9969, Bd. 106 (2022), 5, 054416, S. 054416-1-054416-15

In this paper, we present a study of the temperature-dependent characteristics of electromagnetic fields at the atomic scale in multiferroic bismuth ferrite (BiFeO3 or BFO). The study was performed using time differential perturbed angular correlation (TDPAC) spectroscopy on implanted 111In (111Cd) probes over a wide temperature range. The TDPAC spectra show that substitutional 111In on the Fe3+ site experiences local electric polarization, which is otherwise expected to essentially stem from the Bi3+ lone pair electrons. Moreover, the TDPAC spectra show combined electric and magnetic interactions below the Néel temperature TN. This is consistent with simulated spectra. X-ray diffraction (XRD) was employed to investigate how high-temperature TDPAC measurements influence the macroscopic structure and secondary phases. With the support of ab initio DFT simulations, we can discuss the probe nucleus site assignment and can conclude that the 111In (111Cd) probe substitutes the Fe atom at the B site of the perovskite structure.



https://doi.org/10.1103/PhysRevB.106.054416
Cheng, Wen-Hui; Richter, Matthias H.; Müller, Ralph; Kelzenberg, Michael; Yalamanchili, Sisir; Jahelka, Phillip R.; Perry, Andrea N.; Wu, Pin Chieh; Saive, Rebecca; Dimroth, Frank; Brunschwig, Bruce S.; Hannappel, Thomas; Atwater, Harry A.
Integrated solar-driven device with a front surface semitransparent catalysts for unassisted CO2 reduction. - In: Advanced energy materials, ISSN 1614-6840, Bd. 12 (2022), 36, 2201062, S. 1-9

Monolithic integrated photovoltaic-driven electrochemical (PV-EC) artificial photosynthesis is reported for unassisted CO2 reduction. The PV-EC structures employ triple junction photoelectrodes with a front mounted semitransparent catalyst layer as a photocathode. The catalyst layer is comprised of an array of microscale triangular metallic prisms that redirect incoming light toward open areas of the photoelectrode to reduce shadow losses. Full wave electromagnetic simulations of the prism array (PA) structure guide optimization of geometries and length scales. An integrated device is constructed with Ag catalyst prisms covering 35% of the surface area. The experimental device has close to 80% of the transmittance with a catalytic surface area equivalent 144% of the glass substrate area. Experimentally this photocathode demonstrates a direct solar-to-CO conversion efficiency of 5.9% with 50 h stability. Selective electrodeposition of Cu catalysts onto the surface of the Ag triangular prisms allows CO2 conversion to higher value products enabling demonstration of a solar-to-C2+ product efficiency of 3.1%. This design featuring structures that have a semitransparent catalyst layer on a PV-EC cell is a general solution to light loss by shadowing for front surface mounted metal catalysts, and opens a route for the development of artificial photosynthesis based on this scalable design approach.



https://doi.org/10.1002/aenm.202201062