Erscheinungsjahr 2022

Anzahl der Treffer: 96
Erstellt: Thu, 02 May 2024 23:17:32 +0200 in 0.0926 sec


Kuske, Dietrich; Schwarz, Christian
Alternating complexity of counting first-order logic for the subword order. - In: Acta informatica, ISSN 1432-0525, Bd. 60 (2023), 1, S. 79-100

This paper considers the structure consisting of the set of all words over a given alphabet together with the subword relation, regular predicates, and constants for every word. We are interested in the counting extension of first-order logic by threshold counting quantifiers. The main result shows that the two-variable fragment of this logic can be decided in twofold exponential alternating time with linearly many alternations (and therefore in particular in twofold exponential space as announced in the conference version (Kuske and Schwarz, in: MFCS’20, Leibniz International Proceedings in Informatics (LIPIcs) vol. 170, pp 56:1-56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020) of this paper) provided the regular predicates are restricted to piecewise testable ones. This result improves prior insights by Karandikar and Schnoebelen by extending the logic and saving one exponent in the space bound. Its proof consists of two main parts: First, we provide a quantifier elimination procedure that results in a formula with constants of bounded length (this generalises the procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that quantification in formulas can be restricted to words of bounded length, i.e., the second part of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and deviates significantly from the path of reasoning by Karandikar and Schnoebelen.



https://doi.org/10.1007/s00236-022-00424-2
Schlag, Leslie; Isaac, Nishchay Angel; Hossain, Mohammad M.; Hess, Anna-Lena; Wolz, Benedikt C.; Reiprich, Johannes; Ziegler, Mario; Pezoldt, Jörg; Jacobs, Heiko O.
Self-aligning metallic vertical interconnect access formation through microlensing gas phase electrodeposition controlling airgap and morphology. - In: Advanced electronic materials, ISSN 2199-160X, Bd. 9 (2023), 1, 2200838, S. 1-8

This publication reports self-aligning metallic via microlensing gas phase electrodeposition formation. Key operational parameters to fabricate vertical ruthenium and rhodium interconnects (via) with a diameter of 100 nm are discussed. Moreover, airgaps are implemented during the deposition process, which utilizes spark discharge to generate a flux of charged nanoparticles. An inert gas flow transports the nanoparticles through a reactor chamber close to the target substrate. The substrate uses a pre-patterned resist with openings to a silicon/silicon dioxide/metal stack to direct the deposition of the nanoparticles to form localized self-aligning vertical interconnects. Five process parameters were identified, which impact the morphology and conductance of the resulting interconnects: spark discharge power, gas flow rate, microlens via dimensions, substrate surface potential, and in situ flash lamp power. This parameter set enables a controlled adjustment of the via interconnect morphology and its minimum feature size. Gas flow rate in combination with spark discharge power contribute significantly to the morphology of the interconnect. Spark power and microlens via dimensions have the largest influence on the surface potential of the insulating resist cover, which enables a localized microlensing gas phase electrodeposition of a via with a controlled ratio between conducting diameter and airgap.



https://doi.org/10.1002/aelm.202200838
Prylutskyy, Yuriy; Nozdrenko, Dmytro; Gonchar, Olga; Prylutska, Svitlana; Bogutska, Kateryna; Täuscher, Eric; Scharff, Peter; Ritter, Uwe
The residual effect of C60 fullerene on biomechanical and biochemical markers of the muscle soleus fatigue development in rats. - In: Journal of nanomaterials, ISSN 1687-4129, Bd. 2023 (2023), e2237574, S. 1-11

Muscle fatigue as a defense body mechanism against overload is a result of the products of incomplete oxygen oxidation such as reactive oxygen species. Hence, C60 fullerene as a powerful nanoantioxidant can be used to speed up the muscle recovery process after fatigue. Here, the residual effect of C60 fullerene on the biomechanical and biochemical markers of the development of muscle soleus fatigue in rats for 2 days after 5 days of its application was studied. The known antioxidant N-acetylcysteine (NAC) was used as a comparison drug. The atomic force microscopy to determine the size distribution of C60 fullerenes in an aqueous solution, the tensiometry of skeletal muscles, and the biochemical analysis of their tissues and rat blood were used in this study. It was found that after the cessation of NAC injections, the value of the integrated muscle power is already slightly different from the control (5%-7%) on the first day, and on the second day, it does not significantly differ from the control. At the same time, after the cessation of C60 fullerene injections, its residual effect was 45%-50% on the first day, and 17%-23% of the control on the second one. A significant difference (more than 25%) between the pro- and antioxidant balance in the studied muscles and blood of rats after the application of C60 fullerene and NAС plays a key role in the long-term residual effect of C60 fullerene. This indicates prolonged kinetics of C60 fullerenes elimination from the body, which contributes to their long-term (at least 2 days) compensatory activation of the endogenous antioxidant system in response to muscle stimulation, which should be considered when developing new therapeutic agents based on these nanoparticles.



https://doi.org/10.1155/2023/2237574
Bartsch, Heike; Lubov, Maksim; Kharlamov, Vladimir; Jiménez, Juan Jesús; Morales Sánchez, Francisco Miguel; Pezoldt, Jörg
Characterization of pores in polished low temperature co-fired glass-ceramic composites for optimization of their micromachining. - In: Surface topography, ISSN 2051-672X, Bd. 10 (2022), 4, 045026, S. 1-14

Pores are intrinsic defects of ceramic composites and influence their functional properties significantly. Their characterization is therefore a pivotal task in material and process optimization. It is demonstrated that polished section analysis allows for obtaining precise information on pore size, shape, area fraction, and homogeneous distribution. It is proven that laser scanning microscopy provides accurate height maps and is thus an appropriate technique for assessing surface features. Such data is used to compare areas with good and poor polishing results, and various surface parameters are evaluated in terms of their informative value and data processing effort. The material under investigation is a low temperature co-fired ceramic composite. Through statistical analysis of the data, the inclination angle was identified as an appropriate parameter to describe the polishing result. By using masked data, direct conclusions can be drawn about the leveling of load-bearing surface areas, which are crucial in photolithographic processing steps and bonding technology. A broad discussion of different defects based on the results contributes to a critical analysis of the potentials and obstacles of micromachining of low temperature cofired ceramic substrates.



https://doi.org/10.1088/2051-672X/aca2c7
Bohm, Sebastian; Runge, Erich
Multiphysics simulation of fluid interface shapes in microfluidic systems driven by electrowetting on dielectrics. - In: Journal of applied physics, ISSN 1089-7550, Bd. 132 (2022), 22, S. 224702-1-224702-17

We present a highly efficient simulation method for the calculation of three-dimensional quasi-static interface shapes under the influence of electric fields. The method is especially useful for the simulation of microfluidic systems driven by electrowetting on dielectrics because it accounts automatically and inherently for the highly non-trivial interface shape in the vicinity of the triple-phase contact. In particular, the voltage independence of the local contact angle predicted based on analytical considerations is correctly reproduced in all our simulations. For the calculation of the shape of the interface, the geometry is triangulated and the mesh nodes are shifted until the system energy becomes minimal. The same mesh is also used to calculate the electric field using the boundary-element method. Therefore, only the surface of the geometry needs to be meshed, and no volume meshes are involved. The method can be used for the simulation of closed systems with a constant volume (e.g., droplet-based microfluidics) while preserving the volume very precisely as well as open systems (e.g., the liquid-air interface within micro-cavities or capillaries). Additional effects, such as the influence of gravitational forces, can easily be taken into account. In contrast to other efficient simulations, such as the volume-of-fluid, level-set, or phase-field methods, ideally, sharp interfaces are obtained. We calculate interface shapes for exemplary systems and compare with analytical as well as experimental results.



https://doi.org/10.1063/5.0110149
Feißel, Toni; Büchner, Florian; Kunze, Miles; Rost, Jonas; Ivanov, Valentin; Augsburg, Klaus; Hesse, David; Gramstat, Sebastian
Methodology for virtual prediction of vehicle-related particle emissions and their influence on ambient PM10 in an urban environment. - In: Atmosphere, ISSN 2073-4433, Bd. 13 (2022), 11, 1924, S. 1-14

As a result of rising environmental awareness, vehicle-related emissions such as particulate matter are subject to increasing criticism. The air pollution in urban areas is especially linked to health risks. The connection between vehicle-related particle emissions and ambient air quality is highly complex. Therefore, a methodology is presented to evaluate the influence of different vehicle-related sources such as exhaust particles, brake wear and tire and road wear particles (TRWP) on ambient particulate matter (PM). In a first step, particle measurements were conducted based on field trials with an instrumented vehicle to determine the main influence parameters for each emission source. Afterwards, a simplified approach for a qualitative prediction of vehicle-related particle emissions is derived. In a next step, a virtual inner-city scenario is set up. This includes a vehicle simulation environment for predicting the local emission hot spots as well as a computational fluid dynamics model (CFD) to account for particle dispersion in the environment. This methodology allows for the investigation of emissions pathways from the point of generation up to the point of their emission potential.



https://doi.org/10.3390/atmos13111924
Neitzel, Benedikt; Puch, Florian
Optical detection of void formation mechanisms during impregnation of composites by UV-reactive resin systems. - In: Journal of composites science, ISSN 2504-477X, Bd. 6 (2022), 11, 351, S. 1-15

During the impregnation of reinforcement fabrics in liquid composite molding processes, the flow within fiber bundles and the channels between the fiber bundles usually advances at different velocities. This so-called “dual-scale flow” results in void formation inside the composite material and has a negative effect on its mechanical properties. Semi-empirical models can be applied to calculate the extent of the dual-scale flow. In this study, a methodology is presented that stops the impregnation of reinforcement fabrics at different filling levels by using a photo-reactive resin system. By means of optical evaluation, the theoretical calculation models of the dual-scale flow are validated metrologically. The results show increasingly distinct dual-scale flow effects with increasing pressure gradients. The methodology enables the measurability of microscopic differences in flow front progression to validate renowned theoretical models and compare simulations to measurements of applied injection processes.



https://doi.org/10.3390/jcs6110351
Lucero Lucas, Gisella Liliana; Romanus, Henry; Ispas, Adriana; Bund, Andreas
Hollow platinum-gold and palladium-gold nanoparticles: synthesis and characterization of composition-structure relationship. - In: Journal of nanoparticle research, ISSN 1572-896X, Bd. 24 (2022), 12, 245, insges. 15 S.

Hollow palladium-gold (PdAu) and platinum-gold (PtAu) alloy nanoparticles (NPs) were synthesized through galvanic replacement reactions. PdAu NPs denoted PdAu-99.99 and PdAu-98 were produced using palladium precursors with different purity degree: Na2PdCl4 ≥ 99.99% and Na2PdCl4 98%, respectively. The effect of the addition time of the gold palladium precursor solution on the size of the generated NPs was evaluated. Two types of particles, with a rough and a smooth surface, were identified in the suspensions of PtAu and PdAu NPs by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM). The atomic percentage of gold, platinum, palladium, and cobalt (atomic %) in the nanoparticles was determined by energy dispersive X-ray spectroscopy (EDX). PtAu NPs (26-42 nm) contain Pt (41 at%), Au (36 at%), and Co (23 at%). Two groups of hollow palladium gold NPs (30-50 nm) with a different residual cobalt content were produced. PdAu-99.99 NPs consisted of Pd (68 at%), Au (26 at%), and Co (6 at%), whereas PdAu-98 NPs were composed of Pd (70 at%), Au (22 at%), and Co (8 at%). The hollow structure of the NPs was confirmed by EDX line scanning. Selected area electron diffraction analysis (SAED) revealed the formation of PtAu and PdAu alloys and it was used in estimating the lattice parameters, too.



https://doi.org/10.1007/s11051-022-05619-9
Tan, Aditya Suryadi; Rabel, Fabian; Sattel, Thomas; Sill, Yannick Lee; Goldasz, Janusz
Design and performance investigation of a novel 3DOF compact MR damper. - In: Smart materials and structures, ISSN 1361-665X, Bd. 31 (2022), 12, 125020, S. 1-14

Magnetorheological fluid (MR) based dampers have been established as an alternative to classical hydraulic dampers with proportional electromagnetic valves under vibration processes which demand adaptive damping forces. Almost all MR-dampers are spatially 1-Degree-of-Freedom (DOF) dampers, having only one axis or direction of damping force generation. In many technical applications there exist movements in more than one spatial DOF, eventually necessitating more than one damper. Because of this, the damping is required not only in one but in more spatial directions, yet adjustable. In this work, a new design of a spatial 3DOF MR damper is proposed to allow damping in three directions within one damping device. The underlying motivation is to spatially integrate three damping directions in one device to potentially reduce installation space compared to three separate 1 DOF dampers. The basic idea of the construction is to use one fluid chamber with several spatially distributed control elements at different positions of the fluid chamber. The control elements are electromagnets, generating the magnetic field in the fluid at different positions so that in total 3 spatial DOFs can be damped individually. Experiments and investigation are made, where the damper's behavior are analyzed not only in one single DOF but also in more than one DOF. It is shown, that the damping concept can generate damping in all three spatial DOFs, both individually or together. Moreover, the damping can be generated to be dominant in one specific direction, meanwhile minimum in the other direction orthogonal to it.



https://doi.org/10.1088/1361-665X/aca12f
Naskovska, Kristina; Sokal, Bruno; Almeida, André L. F. de; Haardt, Martin
Using tensor contractions to derive the structure of slice-wise multiplications of tensors with applications to space-time Khatri-Rao coding for MIMO-OFDM systems. - In: EURASIP journal on advances in signal processing, ISSN 1687-6180, Bd. 2022 (2022), 109, S. 1-26

The slice-wise multiplication of two tensors is required in a variety of tensor decompositions (including PARAFAC2 and PARATUCK2) and is encountered in many applications, including the analysis of multidimensional biomedical data (EEG, MEG, etc.) or multi-carrier multiple-input multiple-output (MIMO) systems. In this paper, we propose a new tensor representation that is not based on a slice-wise (matrix) description, but can be represented by a double contraction of two tensors. Such a double contraction of two tensors can be efficiently calculated via generalized unfoldings. It leads to new tensor models of the investigated system that do not depend on the chosen unfolding (in contrast to matrix models) and reveal the tensor structure of the data model, such that all possible unfoldings can be seen at the same time. As an example, we apply this new concept to the design of new receivers for multi-carrier MIMO systems in wireless communications. In particular, we consider MIMO-orthogonal frequency division multiplexing (OFDM) systems with and without Khatri-Rao coding. The proposed receivers exploit the channel correlation between adjacent subcarriers, require the same amount of training symbols as traditional OFDM techniques, but have an improved performance in terms of the symbol error rate. Furthermore, we show that the spectral efficiency of the Khatri-Rao-coded MIMO-OFDM can be increased by introducing cross-coding such that the “coding matrix” also contains useful information symbols. Considering this transmission technique, we derive a tensor model and two types of receivers for cross-coded MIMO-OFDM systems using the double contraction of two tensors.



https://doi.org/10.1186/s13634-022-00937-5