Zeitschriftenaufsätze des InIT der TU IlmenauZeitschriftenaufsätze des InIT der TU Ilmenau
Anzahl der Treffer: 597
Erstellt: Fri, 03 May 2024 23:01:30 +0200 in 0.0977 sec


Zhang, Jianshu; Rakhimov, Damir; Haardt, Martin
Gridless channel estimation for hybrid mmWave MIMO systems via Tensor-ESPRIT algorithms in DFT beamspace. - In: IEEE journal of selected topics in signal processing, ISSN 1941-0484, Bd. 15 (2021), 3, S. 816-831

In this paper, we present a gridless channel estimation algorithm for a hybrid millimeter wave (mmWave) MIMO-OFDM system assuming a frequency-selective channel. The proposed algorithm is based on the Tensor-ESPRIT in DFT beamspace algorithm framework. First, we derive the R-dimensional (R-D) Standard/Unitary Tensor-ESPRIT in DFT beamspace framework and its analytic performance. We show that ESPRIT-type algorithms in a reduced-dimensional DFT beamspace can provide a significant performance gain over ESPRIT-type algorithms in full DFT beamspace and in element space under mild conditions. Afterwards, we develop a gridless channel estimation algorithm that is based on 3-D Tensor-ESPRIT in DFT beamspace algorithms. Numerical simulation results show that the proposed channel estimation algorithm can provide accurate channel estimates using only a few training resources.



https://doi.org/10.1109/JSTSP.2021.3063908
Ardah, Khaled; Gherekhloo, Sepideh; Almeida, André L. F. de; Haardt, Martin
TRICE: a channel estimation framework for RIS-aided millimeter-wave MIMO systems. - In: IEEE signal processing letters, ISSN 1558-2361, Bd. 28 (2021), S. 513-517

We consider the channel estimation problem in point-to-point reconfigurable intelligent surface (RIS)-aided millimeter-wave (mmWave) MIMO systems. By exploiting the low-rank nature of mmWave channels in the angular domains, we propose a non-iterative Two-stage RIS-aided Channel Estimation (TRICE) framework, where every stage is formulated as a multidimensional direction-of-arrival (DOA) estimation problem. As a result, our TRICE framework is very general in the sense that any efficient multidimensional DOA estimation solution can be readily used in every stage to estimate the associated channel parameters. Numerical results show that the TRICE framework has a lower training overhead and a lower computational complexity, as compared to benchmark solutions.



https://doi.org/10.1109/LSP.2021.3059363
Chavez, Jhohan; Ziolkowski, Marek; Schorr, Philipp; Spieß, Lothar; Böhm, Valter; Zimmermann, Klaus
A method to approach constant isotropic permeabilities and demagnetization factors of magneto-rheological elastomers. - In: Journal of magnetism and magnetic materials, ISSN 1873-4766, Bd. 527 (2021), 167742

The use of non-conventional materials is nowadays of much interest in scientific community. Magneto-rheological elastomers are hybrid materials, which in presence of magnetic fields state a change in their mechanical properties. They are composed by an elastomeric matrix with embedded magnetic particles. One of the most attractive features of these materials is that as soon as the magnetic field is removed from the material, the original mechanical properties are completely recovered, with negligible differences in comparison to the original state. This paper focuses on the study of magnetic characteristics of these smart materials, such as relative permeability and demagnetizing factors, for samples with different volume concentration of ferromagnetic particles.



https://doi.org/10.1016/j.jmmm.2021.167742
Kuhnke, Philipp; Beaupain, Marie C.; Cheung, Vincent K. M.; Weise, Konstantin; Kiefer, Markus; Hartwigsen, Gesa
Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. - In: NeuroImage, ISSN 1095-9572, Bd. 219 (2020), 117041, insges. 11 S.

Conceptual knowledge is central to human cognition. The left posterior inferior parietal lobe (pIPL) is implicated by neuroimaging studies as a multimodal hub representing conceptual knowledge related to various perceptual-motor modalities. However, the causal role of left pIPL in conceptual processing remains unclear. Here, we transiently disrupted left pIPL function with transcranial magnetic stimulation (TMS) to probe its causal relevance for the retrieval of action and sound knowledge. We compared effective TMS over left pIPL with sham TMS, while healthy participants performed three different tasks - lexical decision, action judgment, and sound judgment - on words with a high or low association to actions and sounds. We found that pIPL-TMS selectively impaired action judgments on low sound-low action words. For the first time, we directly related computational simulations of the TMS-induced electrical field to behavioral performance, which revealed that stronger stimulation of left pIPL is associated with worse performance for action but not sound judgments. These results indicate that left pIPL causally supports conceptual processing when action knowledge is task-relevant and cannot be compensated by sound knowledge. Our findings suggest that left pIPL is specialized for the retrieval of action knowledge, challenging the view of left pIPL as a multimodal conceptual hub.



https://doi.org/10.1016/j.neuroimage.2020.117041
Mančiâc, Žaklina J.; Cvetkoviâc, Zlata Ž.; Petkoviâc, Bojana R.; Simiâc, Nikola
Influence of the Tellegen type-bi-isotropic sphere on the homogeneity of a field generated by two toroidal electrodes. - In: Revue roumaine des sciences techniques, ISSN 0035-4066, Bd. 65 (2020), 3/4, S. 173-178

Arvinti, Beatrice; Isar, Alexandru; Toader, Dumitru; Töpfer, Hannes; Costache, Marius
Experimental stand for the study of non-sinusoidal electrical phenomena. - In: Revue roumaine des sciences techniques, ISSN 0035-4066, Bd. 65 (2020), 3/4, S. 179-184

Pérez, Eduardo; Kirchhof, Jan; Krieg, Fabian; Römer, Florian
Subsampling approaches for compressed sensing with ultrasound arrays in non-destructive testing. - In: Sensors, ISSN 1424-8220, Bd. 20 (2020), 23, 6734, insges. 23 S.

Full Matrix Capture is a multi-channel data acquisition method which enables flexible, high resolution imaging using ultrasound arrays. However, the measurement time and data volume are increased considerably. Both of these costs can be circumvented via compressed sensing, which exploits prior knowledge of the underlying model and its sparsity to reduce the amount of data needed to produce a high resolution image. In order to design compression matrices that are physically realizable without sophisticated hardware constraints, structured subsampling patterns are designed and evaluated in this work. The design is based on the analysis of the Cramér–Rao Bound of a single scatterer in a homogeneous, isotropic medium. A numerical comparison of the point spread functions obtained with different compression matrices and the Fast Iterative Shrinkage/Thresholding Algorithm shows that the best performance is achieved when each transmit event can use a different subset of receiving elements and each receiving element uses a different section of the echo signal spectrum. Such a design has the advantage of outperforming other structured patterns to the extent that suboptimal selection matrices provide a good performance and can be efficiently computed with greedy approaches.



https://doi.org/10.3390/s20236734
Reum, Thomas; Töpfer, Hannes
A bicomplex finite element method for wave propagation in homogeneous media. - In: Compel, ISSN 2054-5606, Bd. 39 (2020), 5, S. 1031-1039

Purpose The purpose of this paper is to present the advantageous applicability of the bicomplex analysis in the context of the Finite Element Method (FEM). This method can be applied for wave propagation problems in various environments. Design/methodology/approach In this paper, the bicomplex number system is introduced and accordingly the differential equation for time-harmonic Maxwell’s equations in homogeneous media is derived in detail. Besides that, numerical simulations of wave propagation are performed and compared to the traditional approach based on classical FEM related to the Helmholtz equation. The appropriate error norm is investigated for different discretizations. Findings The results show that the use of bicomplex analysis in FEM leads to the higher accuracy of the electromagnetic field determination compared to the traditional Helmholtz approach. By using the bicomplex-valued formulation, the complex-valued electric and magnetic fields can be found directly and no additional FEM calculations are necessary to get the whole field. Originality/value The direct bicomplex formulation overcomes the use of the second order derivatives, which leads to the higher accuracy. In general, accurate calculations of the wave propagation in FEM is still an open problem and the approach described in this paper is a contribution to this class of problems.



https://doi.org/10.1108/COMPEL-01-2020-0010
Häfner, Stephan; Dürr, André; Waldschmidt, Christian; Thomä, Reiner
Mitigation of leakage in FMCW radars by background subtraction and whitening. - In: IEEE microwave and wireless components letters, Bd. 30 (2020), 11, S. 1105-1107

Leakage in frequency-modulated continuous-wave (FMCW) radar with a homodyne receiver induces strong signal components in the lower frequency parts of the radar observations. There, the dynamic range of the observations has been reduced, such that close and weak targets are hard to detect. In this letter, a signal processing method is proposed to mitigate the leakage. First, background subtraction is applied to cancel the leakage. As the cancellation is imperfect, a noisy signal portion remains: the leakage noise. A statistical model is developed to describe the leakage noise as a colored noise process. This model is parameterized from measurements and used to whiten the observations. As a result, the dynamic range is improved, and the close targets become better detectable.



https://doi.org/10.1109/LMWC.2020.3023850
Gentile, Camillo; Molisch, Andreas F.; Chuang, Jack; Michelson, David G.; Bodi, Anuraag; Bhardwaj, Anmol; Ozdemir, Ozgur; Khawaja, Wahab Ali Gulzar; Guvenc, Ismail; Cheng, Zihang; Rottenberg, Fran¸cois; Choi, Thomas; Müller, Robert; Han, Niu; Dupleich, Diego
Methodology for benchmarking radio-frequency channel sounders through a system model. - In: IEEE transactions on wireless communications, Bd. 19 (2020), 10, S. 6504-6519

Development of a comprehensive channel propagation model for high-fidelity design and deployment of wireless communication networks necessitates an exhaustive measurement campaign in a variety of operating environments and with different configuration settings. As the campaign is time-consuming and expensive, the effort is typically shared by multiple organizations, inevitably with their own channel-sounder architectures and processing methods. Without proper benchmarking, it cannot be discerned whether observed differences in the measurements are actually due to the varying environments or to discrepancies between the channel sounders themselves. The simplest approach for benchmarking is to transport participant channel sounders to a common environment, collect data, and compare results. Because this is rarely feasible, this paper proposes an alternative methodology - which is both practical and reliable - based on a mathematical system model to represent the channel sounder. The model parameters correspond to the hardware features specific to each system, characterized through precision, in situ calibration to ensure accurate representation; to ensure fair comparison, the model is applied to a ground-truth channel response that is identical for all systems. Five worldwide organizations participated in the cross-validation of their systems through the proposed methodology. Channel sounder descriptions, calibration procedures, and processing methods are provided for each organization as well as results and comparisons for 20 ground-truth channel responses.



https://doi.org/10.1109/TWC.2020.3003617