Publikationen an der Fakultät für Informatik und Automatisierung ab 2015

Anzahl der Treffer: 1927
Erstellt: Thu, 02 May 2024 23:12:33 +0200 in 0.0722 sec


Fischer, Kai; Simon, Martin; Milz, Stefan; Mäder, Patrick
StickyLocalization: robust end-to-end relocalization on point clouds using graph neural networks. - In: 2022 IEEE Winter Conference on Applications of Computer Vision, (2022), S. 307-316

Relocalization inside pre-built maps provides a big benefit in the course of today’s autonomous driving tasks where the map can be considered as an additional sensor for refining the estimated current pose of the vehicle. Due to potentially large drifts in the initial pose guess as well as maps containing unfiltered dynamic and temporal static objects (e.g. parking cars), traditional methods like ICP tend to fail and show high computation times. We propose a novel and fast relocalization method for accurate pose estimation inside a pre-built map based on 3D point clouds. The method is robust against inaccurate initialization caused by low performance GPS systems and tolerates the presence of unfiltered objects by specifically learning to extract significant features from current scans and adjacent map sections. More specifically, we introduce a novel distance-based matching loss enabling us to simultaneously extract important information from raw point clouds and aggregating inner- and inter-cloud context by utilizing self- and cross-attention inside a Graph Neural Network. We evaluate StickyLocalization’s (SL) performance through an extensive series of experiments using two benchmark datasets in terms of Relocalization on NuScenes and Loop Closing using KITTI’s Odometry dataset. We found that SL outperforms state-of-the art point cloud registration and relocalization methods in terms of transformation errors and runtime.



https://doi.org/10.1109/WACV51458.2022.00038
Scheliga, Daniel; Mäder, Patrick; Seeland, Marco
PRECODE - a generic model extension to prevent deep gradient leakage. - In: 2022 IEEE Winter Conference on Applications of Computer Vision, (2022), S. 3605-3614

Collaborative training of neural networks leverages distributed data by exchanging gradient information between different clients. Although training data entirely resides with the clients, recent work shows that training data can be reconstructed from such exchanged gradient information. To enhance privacy, gradient perturbation techniques have been proposed. However, they come at the cost of reduced model performance, increased convergence time, or increased data demand. In this paper, we introduce PRECODE, a PRivacy EnhanCing mODulE that can be used as generic extension for arbitrary model architectures. We propose a simple yet effective realization of PRECODE using variational modeling. The stochastic sampling induced by variational modeling effectively prevents privacy leakage from gradients and in turn preserves privacy of data owners. We evaluate PRECODE using state of the art gradient inversion attacks on two different model architectures trained on three datasets. In contrast to commonly used defense mechanisms, we find that our proposed modification consistently reduces the attack success rate to 0% while having almost no negative impact on model training and final performance. As a result, PRECODE reveals a promising path towards privacy enhancing model extensions.



https://doi.org/10.1109/WACV51458.2022.00366
Rzanny, Michael Carsten; Wittich, Hans Christian; Mäder, Patrick; Deggelmann, Alice; Boho, David; Wäldchen, Jana
Image-based automated recognition of 31 Poaceae species: the most relevant perspectives. - In: Frontiers in plant science, ISSN 1664-462X, Bd. 12 (2022), 804140, S. 1-12

Poaceae represent one of the largest plant families in the world. Many species are of great economic importance as food and forage plants while others represent important weeds in agriculture. Although a large number of studies currently address the question of how plants can be best recognized on images, there is a lack of studies evaluating specific approaches for uniform species groups considered difficult to identify because they lack obvious visual characteristics. Poaceae represent an example of such a species group, especially when they are non-flowering. Here we present the results from an experiment to automatically identify Poaceae species based on images depicting six well-defined perspectives. One perspective shows the inflorescence while the others show vegetative parts of the plant such as the collar region with the ligule, adaxial and abaxial side of the leaf and culm nodes. For each species we collected 80 observations, each representing a series of six images taken with a smartphone camera. We extract feature representations from the images using five different convolutional neural networks (CNN) trained on objects from different domains and classify them using four state-of-the art classification algorithms. We combine these perspectives via score level fusion. In order to evaluate the potential of identifying non-flowering Poaceae we separately compared perspective combinations either comprising inflorescences or not. We find that for a fusion of all six perspectives, using the best combination of feature extraction CNN and classifier, an accuracy of 96.1% can be achieved. Without the inflorescence, the overall accuracy is still as high as 90.3%. In all but one case the perspective conveying the most information about the species (excluding inflorescence) is the ligule in frontal view. Our results show that even species considered very difficult to identify can achieve high accuracies in automatic identification as long as images depicting suitable perspectives are available. We suggest that our approach could be transferred to other difficult-to-distinguish species groups in order to identify the most relevant perspectives.



https://doi.org/10.3389/fpls.2021.804140
Eisenbach, Markus; Aganian, Dustin; Köhler, Mona; Stephan, Benedict; Schröter, Christof; Groß, Horst-Michael
Visual scene understanding for enabling situation-aware cobots. - Ilmenau : Universitätsbibliothek. - 1 Online-Ressource (2 Seiten)Publikation entstand im Rahmen der Veranstaltung: IEEE International Conference on Automation Science and Engineering ; 17 (Lyon, France) : 2021.08.23-27, TuBT7 Special Session: Robotic Control and Robotization of Tasks within Industry 4.0

Although in the course of Industry 4.0, a high degree of automation is the objective, not every process can be fully automated - especially in versatile manufacturing. In these applications, collaborative robots (cobots) as helpers are a promising direction. We analyze the collaborative assembly scenario and conclude that visual scene understanding is a prerequisite to enable autonomous decisions by cobots. We identify the open challenges in these visual recognition tasks and propose promising new ideas on how to overcome them.



https://doi.org/10.22032/dbt.51471
Simon, Rowena; Klemm, Matthias; Meller, Daniel; Hammer, Martin
Spectral calibration of fluorescence lifetime imaging ophthalmoscopy. - In: Acta ophthalmologica, ISSN 1755-3768, Bd. 100 (2022), 2, S. e612-e613

https://doi.org/10.1111/aos.14950
Gao, Hui; Kuang, Hongyu; Ma, Xiaoxing; Hu, Hao; Lü, Jian; Mäder, Patrick; Egyed, Alexander
Propagating frugal user feedback through closeness of code dependencies to improve IR-based traceability recovery. - In: Empirical software engineering, ISSN 1573-7616, Bd. 27 (2022), 2, 41, insges. 53 S.

Traceability recovery captures trace links among different software artifacts (e.g., requirements and code) when two artifacts cover the same part of system functionalities. These trace links provide important support for developers in software maintenance and evolution tasks. Information Retrieval (IR) is now the mainstream technique for semi-automatic approaches to recover candidate trace links based on textual similarities among artifacts. The performance of IR-based traceability recovery is evaluated by the ranking of relevant traces in the generated lists of candidate links. Unfortunately, this performance is greatly hindered by the vocabulary mismatch problem between different software artifacts. To address this issue, a growing body of enhancing strategies based on user feedback is proposed to adjust the calculated IR values of candidate links after the user verifies part of these links. However, the improvement brought by this kind of strategies requires a large amount of user feedback, which could be infeasible in practice. In this paper, we propose to improve IR-based traceability recovery by propagating a small amount of user feedback through the closeness analysis on call and data dependencies in the code. Specifically, our approach first iteratively asks users to verify a small set of candidate links. The collected frugal feedback is then composed with the quantified functional similarity for each code dependency (called closeness) and the generated IR values to improve the ranking of unverified links. An empirical evaluation based on nine real-world systems with three mainstream IR models shows that our approach can outperform five baseline approaches by using only a small amount of user feedback.



https://doi.org/10.1007/s10664-021-10091-5
Klee, Sascha; Link, Dietmar
Neuronal sources of visually evoked potentials using selective color opponent channel stimulation. - In: Acta ophthalmologica, ISSN 1755-3768, Bd. 100 (2022), S267, insges. 1 S.

https://doi.org/10.1111/j.1755-3768.2022.064
Link, Dietmar; Krauss, Benedikt; Stodtmeister, Richard; Nagel, Edgar; Vilser, Walthard; Klee, Sascha
Determination of the tonographic effect in the human eye using a pneumatic pressure modulator. - In: Acta ophthalmologica, ISSN 1755-3768, Bd. 100 (2022), S267, insges. 1 S.

https://doi.org/10.1111/j.1755-3768.2022.076
Schramm, Stefan; Dietzel, Alexander; Blum, Maren-Christina; Link, Dietmar; Klee, Sascha
Light-field fundus imaging under astigmatism - an eye model study. - In: Acta ophthalmologica, ISSN 1755-3768, Bd. 100 (2022), S267, insges. 1 S.

https://doi.org/10.1111/j.1755-3768.2022.100
Dietzel, Alexander; Schramm, Stefan; Blum, Maren-Christina; Link, Dietmar; Klee, Sascha
Optic nerve head assessment in light-field fundus images- a case study. - In: Acta ophthalmologica, ISSN 1755-3768, Bd. 100 (2022), S267, insges. 1 S.

https://doi.org/10.1111/j.1755-3768.2022.113