Zeitschriftenaufsätze

Anzahl der Treffer: 498
Erstellt: Sun, 28 Apr 2024 18:41:55 +0200 in 0.0628 sec


Charleston-Villalobos, Sonia; Javorka, Michal; Faes, Luca; Voss, Andreas
Editorial: Granger causality and information transfer in physiological systems: basic research and applications. - In: Frontiers in network physiology, ISSN 2674-0109, Bd. 3 (2023), 1284256, S. 01-03

https://doi.org/10.3389/fnetp.2023.1284256
&hacek;Du&hacek;dák, Juraj; Gašpar, Gabriel; Budjač, Roman; Sládek, Ivan; Husar, Peter
A low-power data logger with simple file system for long-term environmental monitoring in remote areas. - In: IEEE sensors journal, ISSN 1558-1748, Bd. 23 (2023), 24, S. 31178-31195

This research addresses the long-term measurement of environmental data in geographically remote areas and an energy-optimized method of storing data on a storage medium. For this purpose, we have developed our measurement module ADL - Advanced Data Logger. In terms of connectivity, the module operates in 3 modes: offline - when measured data is primarily stored on the storage medium; IoT ready - measured data is stored on the storage medium and sent to the remote server in defined batches; online mode - when measured data is preferably sent to the remote server immediately after measurement. The design aims to minimize the module’s power consumption so that the autonomous operating time is close to one year. As part of the design, the simpleFS software module is designed for the role of a simple file system optimized to minimize I/O operations. Its other feature in data storage is the automatic normalization of the data transmitted from the attached sensors. The last part of the design is the AdlReader software solution, used to configure the hardware (HW) module and to retrieve the measured data files. We verified the correct operation of the ADL module along with nine sensors built in a vertical soil temperature profile probe in experimental installation and operation for two months. According to the requirements for our solution, the expected operation time of the ADL module is 9 - 12 months.



https://doi.org/10.1109/JSEN.2023.3328357
Tamburro, Gabriella; Fiedler, Patrique; De Fano, Antonio; Raeisi, Khadijeh; Khazaei, Mohammad; Vaquero, Lucia; Bruña, Ricardo; Oppermann, Hannes; Bertollo, Maurizio; Filho, Edson; Zappasodi, Filippo; Comani, Silvia
An ecological study protocol for the multimodal investigation of the neurophysiological underpinnings of dyadic joint action. - In: Frontiers in human neuroscience, ISSN 1662-5161, Bd. 17 (2023), 1305331, S. 1-19

A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions - including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings - were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.



https://doi.org/10.3389/fnhum.2023.1305331
Oppermann, Hannes; Wulf, Simon; Komosar, Milana; Haueisen, Jens
Fully integrated Windows framework for source localization with MNE Python and FreeSurfer. - In: Current directions in biomedical engineering, ISSN 2364-5504, Bd. 9 (2023), 1, S. 371-374

There is a variety of software packages, toolboxes, or libraries for the analysis and processing of neurophysiological data such as EEG and MEG. Many of these solutions provide algorithms for both, sensor-space analysis and sourcespace analysis. Especially with the solutions that run on Windows machines, it is noticeable that the step of the volume model generation is usually not included, since the state-ofthe- art software for this (FreeSurfer) is a Unix-based software and thus not available forWindows machines. Therefore, our goal was to develop a fully-integrated software solution for Windows machines, accessing all processing steps already implemented in an existing toolbox and using FreeSurfer in the same system. Due to its widespread use, we chose MNE Python as the basis for our fully integrated software solution. We used the Windows Subsystem for Linux to create a virtual Linux kernel for the FreeSurfer installation. To demonstrate the workflow, the libeep, and AutoReject libraries have been added. A 64-channel EEG recording during right-hand movement (ME) and imagination (MI) was used to test the implemented workflow. The developed framework consists of several modules within Python, mainly using existing scripts and functions. The library libeep was integrated to read the EEG data with the ‘.cnt’, eeprope format. AutoReject was used to automatically interpolate detected bad channels or to reject complete epochs. FreeSurfer was successfully integrated and customized Python scripts enabled the communication between MNE Python on a Windows machine and FreeSurfer on a virtual Linux kernel. With the above-mentioned EEG dataset, we performed source reconstruction and were able to show ERD/S patterns for both, ME and MI. Our new, fullyintegrated software framework can be used on Windows machines to perform a complete process of source reconstruction.



https://doi.org/10.1515/cdbme-2023-1093
Jing, Ying; Numssen, Ole; Weise, Konstantin; Kalloch, Benjamin; Buchberger, Lena; Haueisen, Jens; Hartwigsen, Gesa; Knösche, Thomas R.
Modeling the effects of transcranial magnetic stimulation on spatial attention. - In: Physics in medicine and biology, ISSN 1361-6560, Bd. 68 (2023), 21, 214001, S. 1-16

Objectives. Transcranial magnetic stimulation (TMS) has been widely used to modulate brain activity in healthy and diseased brains, but the underlying mechanisms are not fully understood. Previous research leveraged biophysical modeling of the induced electric field (E-field) to map causal structure-function relationships in the primary motor cortex. This study aims at transferring this localization approach to spatial attention, which helps to understand the TMS effects on cognitive functions, and may ultimately optimize stimulation schemes. Approach. Thirty right-handed healthy participants underwent a functional magnetic imaging (fMRI) experiment, and seventeen of them participated in a TMS experiment. The individual fMRI activation peak within the right inferior parietal lobule (rIPL) during a Posner-like attention task defined the center target for TMS. Thereafter, participants underwent 500 Posner task trials. During each trial, a 5-pulse burst of 10 Hz repetitive TMS (rTMS) was given over the rIPL to modulate attentional processing. The TMS-induced E-fields for every cortical target were correlated with the behavioral modulation to identify relevant cortical regions for attentional orientation and reorientation. Main results. We did not observe a robust correlation between E-field strength and behavioral outcomes, highlighting the challenges of transferring the localization method to cognitive functions with high neural response variability and complex network interactions. Nevertheless, TMS selectively inhibited attentional reorienting in five out of seventeen subjects, resulting in task-specific behavioral impairments. The BOLD-measured neuronal activity and TMS-evoked neuronal effects showed different patterns, which emphasizes the principal distinction between the neural activity being correlated with (or maybe even caused by) particular paradigms, and the activity of neural populations exerting a causal influence on the behavioral outcome. Significance. This study is the first to explore the mechanisms of TMS-induced attentional modulation through electrical field modeling. Our findings highlight the complexity of cognitive functions and provide a basis for optimizing attentional stimulation protocols.



https://doi.org/10.1088/1361-6560/acff34
Kremmer, Stephan; Manoiu, Roxana; Smok, Claudia; Klee, Sascha; Anastassiou, Gerasimos; Link, Dietmar; Stodtmeister, Richard
Tadalafil to lower retinal venous pressure - a new approach to treatment of primary open-angle glaucoma? :
Tadalafil zur Senkung des retinalen Venendrucks - ein neuer Ansatz in der Therapie des primären Offenwinkelglaukoms?. - In: Die Ophthalmologie, ISSN 2731-7218, Bd. 120 (2023), 10, S. 1045-1048

https://doi.org/10.1007/s00347-023-01813-9
Schuler, Ramona; Marquardt, Christoph; Kalev, Georgi; Langer, Andreas; Konschake, Marko; Schiedeck, Thomas; Bandura, Julia; Goos, Matthias
Technical aspects of a new approach to intraoperative pelvic neuromonitoring during robotic rectal surgery. - In: Scientific reports, ISSN 2045-2322, Bd. 13 (2023), 17156, S. 1-13

It has been found that rectal surgery still leads to high rates of postoperative urinary, fecal, or sexual dysfunction, which is why nerve-sparing surgery has gained increasing importance. To improve functional outcomes, techniques to preserve pelvic autonomic nerves by identifying anatomic landmarks and implementing intraoperative neuromonitoring methods have been investigated. The objective of this study was to transfer a new approach to intraoperative pelvic neuromonitoring based on bioimpedance measurement to a clinical setting. Thirty patients (16 male, 14 female) involved in a prospective clinical investigation (German Clinical Trials Register DRKS00017437, date of first registration 31/03/2020) underwent nerve-sparing rectal surgery using a new approach to intraoperative pelvic neuromonitoring based on direct nerve stimulation and impedance measurement on target organs. Clinical feasibility of the method was outlined in 93.3% of the cases. Smooth muscle contraction of the urinary bladder and/ or the rectum in response to direct stimulation of innervating functional nerves correlated with a change in tissue impedance compared with the pre-contraction state. The mean amplitude (Amax) of positive signal responses was Amax = 3.8%, negative signal responses from a control tissue portion with no stimulation-induced impedance change had an amplitude variation of 0.4% on average. The amplitudes of positive and negative signal responses differed significantly (statistical analysis using two-sided t-test), allowing the nerves to be identified and preserved. The results indicate a reliable identification of pelvic autonomic nerves during rectal surgery.



https://doi.org/10.1038/s41598-023-41859-y
Iszak, Krisztián; Gronemann, Simon Mathies; Meyer, Stefanie; Hunold, Alexander; Zschüntzsch, Jana; Bähr, Mathias; Paulus, Walter; Antal, Andrea
Why temporal inference stimulation may fail in the human brain: a pilot research study. - In: Biomedicines, ISSN 2227-9059, Bd. 11 (2023), 7, 1813, S. 1-25

Temporal interference stimulation (TIS) aims at targeting deep brain areas during transcranial electrical alternating current stimulation (tACS) by generating interference fields at depth. Although its modulatory effects have been demonstrated in animal and human models and stimulation studies, direct experimental evidence is lacking for its utility in humans (in vivo). Herein, we directly test and compare three different structures: firstly, we perform peripheral nerve and muscle stimulation quantifying muscle twitches as readout, secondly, we stimulate peri-orbitally with phosphene perception as a surrogate marker, and thirdly, we attempt to modulate the mean power of alpha oscillations in the occipital area as measured with electroencephalography (EEG). We found strong evidence for stimulation efficacy on the modulated frequency in the PNS, but we found no evidence for its utility in the CNS. Possible reasons for failing to activate CNS targets could be comparatively higher activation thresholds here or inhibitory stimulation components to the carrier frequency interfering with the effects of the modulated signal.



https://doi.org/10.3390/biomedicines11071813
Schier, Peter; Jaufenthaler, Aaron; Liebl, Maik; Arsalani, Soudabeh; Wiekhorst, Frank; Baumgarten, Daniel
Human-sized quantitative imaging of magnetic nanoparticles with nonlinear magnetorelaxometry. - In: Physics in medicine and biology, ISSN 1361-6560, Bd. 68 (2023), 15, 155002, S. 1-10

Objective. Magnetorelaxomety imaging (MRXI) is a noninvasive imaging technique for quantitative detection of magnetic nanoparticles (MNPs). The qualitative and quantitative knowledge of the MNP distribution inside the body is a prerequisite for a number of arising biomedical applications, such as magnetic drug targeting and magnetic hyperthermia therapy. It was shown throughout numerous studies that MRXI is able to successfully localize and quantify MNP ensembles in volumes up to the size of a human head. However, deeper regions that lie far from the excitation coils and the magnetic sensors are harder to reconstruct due to the weaker signals from the MNPs in these areas. On the one hand, stronger magnetic fields need to be applied to produce measurable signals from such MNP distributions to further upscale MRXI, on the other hand, this invalidates the assumption of a linear relation between applied magnetic field and particle magnetization in the current MRXI forward model which is required for the imaging procedure. Approach. We tackle this problem by introducing a nonlinear MRXI forward model that is also valid for strong magnetic excitation fields. Main results. We demonstrate in our experimental feasibility study that scaling up the imaging region to the size of a human torso using nonlinear MRXI is possible. Despite the extreme simplicity of the imaging setup applied in this study, an immobilized MNP sample with 6.3 cm3 and 12 mg Fe could be localized and quantified with an acceptable quality. Significance. A well-engineered MRXI setup could provide much better imaging qualities in shorter data acquisition times, making nonlinear MRXI a viable option for the supervision of MNP related therapies in all regions of the human body, specifically magnetic hyperthermia.



https://doi.org/10.1088/1361-6560/ace304
Ramon, Ceon; Graichen, Uwe; Gargiulo, Paolo; Zanow, Frank; Knösche, Thomas R.; Haueisen, Jens
Spatiotemporal phase slip patterns for visual evoked potentials, covert object naming tasks, and insight moments extracted from 256 channel EEG recordings. - In: Frontiers in integrative neuroscience, ISSN 1662-5145, Bd. 17 (2023), 1087976, S. 01-20

Phase slips arise from state transitions of the coordinated activity of cortical neurons which can be extracted from the EEG data. The phase slip rates (PSRs) were studied from the high-density (256 channel) EEG data, sampled at 16.384 kHz, of five adult subjects during covert visual object naming tasks. Artifact-free data from 29 trials were averaged for each subject. The analysis was performed to look for phase slips in the theta (4-7 Hz), alpha (7-12 Hz), beta (12-30 Hz), and low gamma (30-49 Hz) bands. The phase was calculated with the Hilbert transform, then unwrapped and detrended to look for phase slip rates in a 1.0 ms wide stepping window with a step size of 0.06 ms. The spatiotemporal plots of the PSRs were made by using a montage layout of 256 equidistant electrode positions. The spatiotemporal profiles of EEG and PSRs during the stimulus and the first second of the post-stimulus period were examined in detail to study the visual evoked potentials and different stages of visual object recognition in the visual, language, and memory areas. It was found that the activity areas of PSRs were different as compared with EEG activity areas during the stimulus and post-stimulus periods. Different stages of the insight moments during the covert object naming tasks were examined from PSRs and it was found to be about 512 ± 21 ms for the ‘Eureka’ moment. Overall, these results indicate that information about the cortical phase transitions can be derived from the measured EEG data and can be used in a complementary fashion to study the cognitive behavior of the brain.



https://doi.org/10.3389/fnint.2023.1087976