Dissertationen, Habilitationsschriften

Anzahl der Treffer: 72
Erstellt: Sat, 13 Apr 2024 23:05:40 +0200 in 0.0705 sec


Poroskun, Ivan;
Übertragung und Erweiterung des Konzepts des Virtuellen Koordinatenmessgerätes auf neue metrologische Anwendungen am Beispiel der Planck-Waage. - Ilmenau : Universitätsbibliothek, 2024. - 1 Online-Ressource (xiii, 111 Seiten)
Technische Universität Ilmenau, Dissertation 2024

Die Bestimmung der Messunsicherheit ist ein zentraler Aspekt jeder metrologischen Aufgabe. Mit fortschreitender Digitalisierung und bei immer komplexeren Messungen werden die Messunsicherheiten zunehmend in einer Simulation ermittelt. Die entsprechende Simulationssoftware wird dabei über Jahre oder sogar Jahrzehnte zusammen mit dem Experiment weiterentwickelt. Damit dieser Prozess möglichst effizient und nachhaltig gestaltet werden kann, bedarf es einer systematischen Vorgehensweise bei der Implementierung der physikalischen Zusammenhänge in einer Simulationssoftware. Dazu werden in dieser Arbeit die Konzepte einer etablierten Simulationssoftware für die Messunsicherheitsbestimmung verallgemeinert und für die Anwendung auf neue metrologische Aufgaben übertragen. Als Ausgangspunkt wird dafür das VCMM – das Virtuelle Koordinatenmessgerät – herangezogen. Um zu verstehen, wie das VCMM aufgebaut ist und was seinem Konzept zugrunde liegt, wird es von Grund auf neu implementiert. Dabei werden die Ansätze der Modellbildung des VCMMs erkannt und verallgemeinert. Demnach wird der gesamte Messprozess in einer Simulation nachgebildet. Weiterhin wird eine Softwarestruktur erarbeitet, mit der vergleichbare Simulationssoftware aufgebaut werden kann. Um schließlich die physikalischen Modelle einer Messung zu einer Software zu implementieren, wird eine unterstützende Softwarebibliothek entwickelt. Sie enthält die wiederkehrenden Komponenten einer Monte-Carlo-basierten Simulationssoftware und hilft bei der Umsetzung der Softwarestruktur. Zur Veranschaulichung der erarbeiteten Vorgehensweise wird als erstes Anwendungsbeispiel die Planck-Waage betrachtet. Dabei wird eine Simulationssoftware für die Bestimmung der Messunsicherheiten an der Planck-Waage erstellt. Die Software ist modular aufgebaut und bietet vielseitige Analysemöglichkeiten, die einen Einblick in die physikalischen Zusammenhänge der Messung ermöglichen. Die Erstellung der Simulationssoftware für weitere metrologische Anwendungen erfolgt äquivalent.



https://doi.org/10.22032/dbt.59707
Pabst, Markus;
Planck extension for a prototype vacuum mass comparator. - Ilmenau : Universitätsbibliothek, 2024. - 1 Online-Ressource (XI, 120 Seiten)
Technische Universität Ilmenau, Dissertation 2024

Diese Arbeit befasst sich mit der technischen Umsetzung zur Realisierung des Kilogramms nach der neuen Definition des Kilogramms von 2019. Im Stand der Technik wird die Geschichte des Kilogramms zurückverfolgt und es werden die wichtigsten Meilensteine der Wägetechnik vorgestellt. Anschließend werden verschiedene Ansätze zur Umsetzung der Realisierung des Kilogramms nach der neuen Definition aufgezeigt. Es werden die Grundlagen der hochpräzisen Massebestimmung einschließlich der Grenzen, Probleme und neuesten Entwicklungen auf dem Gebiet der Wägetechnik dargestellt. Darüber hinaus werden die Grundlagen der absoluten Massebestimmung mit einer Planck-Waage nach der neuen Definition des Kilogramms dargestellt. Im weiteren Verlauf wird die Entwicklung einer Planck-Waage als Erweiterung eines handelsüblichen Hochvakuum-Massekomparators beschrieben. Dies ermöglicht die Bestimmung des Kilogramms nach der neuen Definition auf der Grundlage von Massekomparatoren, die mit langjähriger Erfahrung entwickelt und getestet wurden. Darüber hinaus können die Massekomparatoren weiterhin zur Aufrechterhaltung der Kalibrierkette nach der alten Definition des Kilogramms verwendet werden. Im Rahmen der Entwicklung dieser Planck-Erweiterung für Massekomparatoren wird die Entwicklung von Magnetsystemen eingehend diskutiert. Im weiteren Verlauf wird die allgemeine Funktionsweise des Systems vorgestellt und beschrieben und die Messmethodik erläutert. Die aus dem Hauptexperiment gewonnenen Messergebnisse werden im Rahmen einer detaillierten Datenanalyse vorgestellt und diskutiert. In der Schlussfolgerung werden die Ergebnisse diskutiert, bewertet und mögliche Verbesserungsvorschläge aufgezeigt und vorgestellt.



https://doi.org/10.22032/dbt.59667
Krause, Tim;
Dynamische Messung von sicherheitstechnisch relevanten Explosionsdrücken. - Braunschweig : Physikalisch-Technische Bundesanstalt, 2023. - xii, 127 Seiten. - (PTB-Bericht)
Technische Universität Ilmenau, Dissertation 2023

ISBN 978-3-944659-29-9
Literaturverzeichnis: Seite 120-127

Die Zündschutzart „druckfeste Kapselung“ ist ein im Bereich des Explosionsschutzes häufig verwendetes Schutzprinzip, bei dem verhindert werden soll, dass eine eventuell im Inneren eines Gerätes auftretende Explosion nach außen dringt, um eine dort potenziell vorhandene explosionsfähige Atmosphäre zu entzünden. Bei der Konformitätsbewertung solcher Geräte ist die dynamische Messung von Explosionsdrücken eine der wesentlichen Prüfungen und im Einzelnen von sicherheitstechnischer Relevanz. Im Kontext der gegenseitigen Anerkennung von Messergebnissen ist es darüber hinaus von sehr großer Bedeutung, eine vergleichbare Qualität bei der Messung zu gewährleisten. Ringvergleichsprogramme haben gezeigt, dass diese vergleichbare Qualität nicht durchweg gegeben ist. Die Identifizierung der relevanten Einflussgrößen bei der Messung von Explosionsdrücken, die daraus resultierenden Folgen für die Vergleichbarkeit und die Diskussion von Maßnahmen zum Umgang mit diesen Einflussfaktoren sind wesentlicher Gegenstand dieser Arbeit. Dafür wurden einerseits die Messungen und Prüfparameter der am Ringvergleich teilnehmenden Prüflaboratorien analysiert. Andererseits wurden eigene experimentelle Untersuchungen unter Verwendung unterschiedlicher Prüfmuster, Prüfaufbauten und Prüfparameter durchgeführt. Mit dem Einfluss von Anfangsdruck und -temperatur des explosionsfähigen Gemisches, dem Einfluss des Thermoschockes sowie der Beschleunigungsempfindlichkeit der Drucksensoren ergeben sich drei signifikante Einflussgrößen im Zuge dieser Studien. Im Ergebnis resultieren aus den Untersuchungen anwendbaren Korrekturrechnungsverfahren für die Messgröße, geeignete Präparationsmöglichkeiten für die Drucksensoren sowie Filter- und Verrechnungsverfahren für die Messdaten, um die Einflussgrößen zu reduzieren und die Vergleichbarkeit zu erhöhen. Darüber hinaus wird mittels einer Messunsicherheitsbetrachtung aufgezeigt, dass die üblicherweise verwendete Messkette eine hohe Genauigkeit aufweist und damit eine eher untergeordnete Rolle bezüglich einer Einflussgröße auf den Explosionsdruck einnimmt. Diese Arbeit trägt allgemein zum praktischen und metrologischen Verständnis bei der dynamischen Messung sicherheitsrelevanter Explosionsdrücke bei, nicht zuletzt dadurch, dass die resultierenden Erkenntnisse die internationale Normung im Bereich der druckfesten Kapselung aktiv unterstützen.



Rogge, Norbert;
Statische und dynamische Charakterisierung einer Planck-Waage. - Ilmenau : Universitätsbibliothek, 2022. - 1 Online-Ressource (VIII, 142 Seiten)
Technische Universität Ilmenau, Dissertation 2022

Inhalt dieser Arbeit sind Untersuchungen zu den statischen und insbesondere dynamischen Eigenschaften von Wägesystemen nach dem Prinzip der elektromagnetischen Kraftkompensation (EMK). Für diesen Waagentyp ergeben sich aufgrund der im Jahr 2019 erfolgten Neudefinition des Kilogramm neue Anwendungsfelder, in denen die Definition in Form einer Kibble-Waage direkt in einem Kraftmess- oder Wägesystem umgesetzt wird. Eine derartige Entwicklung, die als Tischgerät konzipiert ist und daher auch als ”table top Kibble Balance” bezeichnet werden kann, stellt die Planck-Waage dar, die in einem gemeinsamen Forschungsprojekt der Physikalisch-Technischen Bundesanstalt (PTB) und dem Institut für Prozessmess- und Sensortechnik (IPMS) der TU Ilmenau auf Basis von kommerziellen EMK-Wägezellen umgesetzt wurde. Aufgrund der prinzipbedingten dynamischen Anregung der Wägezelle und der Notwendigkeit einer rückführbaren Messung der beteiligten elektrischen Größen ergeben sich neuartige Fragestellungen bei der Charakterisierung und metrologischen Bewertung von EMK-Wägezellen. Einen signifikanten Einfluss auf die erreichbare Unsicherheit haben Winkelschwingungen bei der dynamischen Anregung so wie die relative Ausrichtung der Messachsen der Waage zu derjenigen des verwendeten Interferometers. Aufbauend auf Erfahrungen aus Untersuchungen an dynamischen EMK-Wägesystemen werden die Eigenschaften der sogenannten PB2-Variante der Planck-Waage untersucht und deren Auswirkungen auf die Unsicherheit der Massebestimmung analysiert. Dazu kommen verschiedene optische und elektrische Messsysteme zum Einsatz, deren Unsicherheitsbeiträge wiederum selbst berücksichtigt werden. Weiterhin wird ein Messablauf vorgestellt, der die Korrektion von Drifteffekten und die Minimierung des Spulenstromeffekts ermöglicht. Nach dem derzeitigen Stand können mit dem PB2-System Massebestimmungen mit einer relativen Unsicherheit von bis zu 2,5 × 10^-6 in einem Messbereich von 1 mg bis 100 g erreicht werden. Aus den durchgeführten Untersuchungen können jedoch Ansatzpunkte abgeleitet werden, die eine weitere Reduzierung der Unsicherheiten in folgenden Entwicklungen der Planck-Waage ermöglichen.



https://doi.org/10.22032/dbt.55687
Marin, Sebastian;
Entwicklung eines Temperatur-Blockkalibrators mit Temperaturabsolutwertbezug. - Ilmenau : Universitätsbibliothek, 2021. - 1 Online-Ressource (II, 155 Seiten)
Technische Universität Ilmenau, Dissertation 2021

Temperatur-Blockkalibratoren werden sehr häufig in der Industrie und in Kalibrierlaboratorien bei Vergleichskalibrierungen von Berührungsthermometern als Temperiereinrichtungen eingesetzt. Hierbei erfolgt die Temperierung der Thermometer in einem metallischen Ausgleichsblock, dessen Temperatur mit einem internen Referenzthermometer bestimmt wird. Für die Erzielung kleiner Messunsicherheiten stellen dabei die Ausbildung eines homogenen Temperaturfeldes im Ausgleichsblock sowie die Ermittlung dieser Temperatur mit rückführbar kalibrierten Referenzthermometern die größten Herausforderungen dar. In dieser Dissertation wird ein neues Konzept eines Temperatur-Blockkalibrators im Temperaturbereich von 80 ˚C bis 430 ˚C vorgestellt. Abweichend zum Stand der Technik besitzt der neue Blockkalibrator eine Mehrzonenheizung und Wärmestromsensoren im Ausgleichsblock. Beides sorgt für die Verbesserung der Temperaturhomogenität. Außerdem ist eine kompakte Mehrfachfixpunktzelle für die rückführbare in situ Kalibrierung des internen Referenzthermometers enthalten. Das Konzept des Temperatur-Blockkalibrators sowie seine konstruktive Realisierung werden mittels probabilistischer Berechnungen numerischer FEM-Simulationen untersucht und mit Zielrichtung bester Temperaturhomogenität im Ausgleichsblock optimiert. Auf dieses Modell gestützt werden die Heizleistungen für die Mehrzonenheizung abgeschätzt und ein Abkühlungskonzept erarbeitet. Zudem wird aus dem FEM-Modell ein Systemmodell in Zustandsraumdarstellung des Temperatur-Blockkalibrators hergeleitet. Dieses kann z.B. für eine Reglerauslegung verwendet werden. Die internationale Temperaturskala von 1990 nutzt Phasenumwandlungstemperaturen hochreiner Stoffe für ihre Definition. Diese Temperaturen FP sind idealerweise konstant, sehr gut reproduzierbar und international anerkannt. Die kompakte Mehrfachfixpunktzelle enthält die Fixpunktmaterialien Indium ([theta]FP = 156,5985 ˚C), Zinn ([theta]FP = 231,928 ˚C) und Zink ([theta]FP = 419,527 ˚C). Anhand dieser Fixpunkttemperaturen kann das interne Referenzthermometer des Temperatur-Blockkalibrators in situ rückführbar zur internationalen Temperaturskala kalibriert werden. Der Entwicklungsprozess der kompakten Mehrfachfixpunktzelle wird in dieser Arbeit ausführlich beschrieben. Ihre Geometrie wird nach thermischen und mechanischen Kriterien entworfen und auf Grundlage von probabilistischen Berechnungen mit FEM-Modellen optimiert. Ausgehend von einer Langzeitmessung wurden Unsicherheiten für die drei Fixpunkttemperaturen von kleiner als 60 mK (k = 2) bestimmt.



https://doi.org/10.22032/dbt.49288
Dannberg, Oliver;
Entwicklung eines Prüfstandes zur rückführbaren Kalibrierung von Cantilevern. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (ii, 109 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Zur rückführbaren Messung von Kräften im Bereich von Nanonewton werden typischerweise AFM Cantilever verwendet, deren Durchbiegung in guter Näherung proportional zur eingeleiteten Kraft ist. Die Proportionalitätskonstante zwischen den Größen wird durch die Steifigkeit des Cantilevers beschrieben. In dieser Arbeit wird die Konzeption, Entwickelung und Analyse eines Prüfstandes zur Vermessung der Steifigkeiten von Cantilevern beschrieben. Dazu wird der Cantilever an einem Halter befestigt und durch einen Piezoantrieb auf die Oberfläche eines Diamanttasters gedrückt. Die Auslenkung des Cantilevers wird durch ein Differenzinterferometer und die dafür notwendige Kraft mit einer neu entwickelten EMK-Wägezelle gemessen. Der Mechanismus der monolithischen Wägezelle ist durch die Verwendung eines einzelnen Drehgelenks sehr weich und ermöglicht dadurch eine hohe Kraftauflösung. Die Position des Wägebalkens wird durch ein weiteres Differenzinterferometer gemessen und mit einem PID-Regler zu Null geregelt. In zwei unabhängigen Verfahren wurde in guter Übereinstimmung die effektive Kraftkonstante der Wägezelle auf Bl = 25,9 mN/A bestimmt. Der Prüfstand wurde hinsichtlich seiner Eigenschaften untersucht und die Einflussgrößen auf die Messunsicherheit der Cantileversteifigkeit identifiziert. Die Kalibrierung eines weichen Cantilever ergab eine relative Messunsicherheit von 1,5 % (k = 2) bei einer Kalibrierkraft < 100 nN. Bei der anschließenden Untersuchung der Spitze waren keine Schäden festzustellen. Die Messung eines zweiten Cantilevers ergab eine gute Wiederholbarkeit der Kalibrierergebnisse. Außerdem wurden die durch diesen Prüfstand erzielten Ergebnisse mit den Resultaten eines an deren Prüfstandes verglichen und zeigten gute Übereinstimmung.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000578
Schädel, Sebastian;
Neuartiges Messverfahren zur 3D-Gewindekalibrierung unter Verwendung einer flächenhaften Messstrategie und eines ganzheitlichen Auswertealogorithmus. - Bremen : Fachverlag NW in der Carl Schünemann Verlag GmbH, 2020. - X, 152 Seiten. - (PTB-Bericht)
Technische Universität Ilmenau, Dissertation 2020

ISBN 978-3-95606-529-3
Literaturverzeichnis: Seite 119-127

Das Gewinde zählt heutzutage zu den am häufigsten eingesetzten Maschinenelementen. Der Grund dafür ist die universelle Anwendbarkeit als Befestigungs-, Verbindungs-, Bewegungs-, Dichtungs- oder Zentrierelement. Dabei stellt die Funktion häufig höchste Anforderungen an die Genauigkeit der Gewindegeometrie. Demzufolge wächst der Anspruch an die technologischen Lösungen zur Fertigung und Prüfung von geometrischen Merkmalen am Gewinde stetig. Gewinde werden gemäß aktueller Normen und Richtlinien bislang nur stichprobenartig an bestimmten Punkten und in ausgewählten Schnitten gemessen und ausgewertet. Die wendelförmige Geometrie lässt sich hinsichtlich ihrer Funktionalität daher nur unzureichend bewerten. Der Einsatz einer flächenhaften Messstrategie und einer ganzheitlichen Auswertemethode revolutioniert die konventionellen Vorgehensweisen und ermöglicht zudem erstmals eine funktionsorientierte Prüfung von Gewinden. Die Gewindemetrologie steht deshalb in ihrer fast hundertjährigen Entwicklungsgeschichte im Zuge der vierten industriellen Revolution vor einem Paradigmenwechsel. Um diesem Rechnung zu tragen, beschäftigt sich die vorliegende Arbeit mit der Entwicklung eines fortschrittlichen messtechnischen Verfahrens zur Rückführung von Bestimmungsgrößen am Gewinde mit den höchsten Anforderungen an die Messunsicherheit im Umfeld eines nationalen Metrologie Instituts, der Physikalisch-Technischen Bundesanstalt (PTB). Das Messverfahren zielt auf den Einsatz von flächenhaften Messstrategien und ganzheitlichen Auswertemethoden im Sinne der im Jahre 2015 aktualisierten Technologie-Roadmap Fertigungsmesstechnik 2020 ab. Die messtechnische Erfassung der Werkstückgestalt eines Gewindes erfolgt auf einem Koordinatenmessgerät, welches in den letzten Jahrzehnten Einzug in viele Messlaboratorien gefunden hat. Die ganzheitliche Auswertung basiert auf dem erfassten dreidimensionalen Messdatensatz und einem geometrisch-idealen Modell eines Gewindes. Die bestmögliche Einpassung des Modells in den Messdatensatz erfolgt mit einem im Rahmen dieser Arbeit implementierten Approximationsalgorithmus. Das Messergebnis liefert eine umfassende Angabe der Abweichungen in Maß-, Form- und Lage der Istgeometrie bezüglich der Nenngeometrie. Im praktischen Teil der Arbeit erfolgt anhand werkstückähnlicher Normale von Gewinden der PTB die Verifikation der metrologischen Lösungsansätze.



Kirchner, Johannes;
Grundlegende Entwicklungen und Untersuchungen zur Mikro- und Nanostrukturierung durch Direct Laser Writing in Nanopositionier- und Nanomessmaschinen. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (II, 116 Seiten)
Technische Universität Ilmenau, Dissertation 2020

In dieser Arbeit werden Entwicklungen und Untersuchungen zum Direct Laser Writing, einem maskenlosen lithografischen Bearbeitungsprozess, vorgestellt. Diese hochauflösende lasergestützte Strukturierungstechnik wird mit einer am Institut für Prozessmess- und Sensortechnik entwickelten Nanopositionier- und Nanomessmaschine kombiniert, die sich durch eine extrem hohe Ortsauflösung über einen sehr großen Arbeitsbereich auszeichnet. Durch die synergetische Verbindung des lithografischen Verfahrens mit der hochpräzisen Nano-Koordinatenmessmaschine, wird deren Anwendungsbereich vom präzisen Positionieren und Messen um das Strukturieren zunächst auf planaren und später auch auf gekrümmten Oberflächen, erweitert. Dabei steht das Erreichen geringster lithografisch erzeugter Strukturbreiten in der Größe beugungsbegrenzender Limitationen im Vordergrund der Arbeit. Für die Einkopplung des Lithografielasers wird der Aufbau eines optischen Nanosensors verwendet. Die Sensorik dient der Antastung der Strukturierungsfläche und richtet die Probe auf wenige Nanometer genau zum Bearbeitungslaser aus. Frühere Untersuchungen haben gezeigt, dass der bisher verwendete Fokussensor für diese Zwecke nicht gut geeignet ist. Aus diesem Grund widmet sich die Arbeit zusätzlich der Entwicklung eines neuen, differentiellen, chromatisch konfokalen und fasergekoppelten Abstandssensors, von der Konzeptfindung bis hin zur Inbetriebnahme. Die messtechnischen Untersuchungen des neuen Sensors zeigen, dass eine laterale Auflösung von < 2 [my]m und eine axiale Auflösung von < 1 nm erreicht werden kann. Die Standardabweichung beträgt dabei weniger als 5 nm. Das Basiskonzept des Messsystems wird im Verlauf der Arbeit dahingehend entwickelt, eine hochpräzise lithografische Applikation zu ermöglichen. Durch die systematische Verbesserung der lithografischen Prozessparameter ist es in Kombination mit dem neuen Messsystem möglich, Strukturbreiten von 600 nm und darunter zu erzeugen. In Zukunft soll der neue Sensor auch zur Strukturierung von Linsen, Freiformen und Asphären genutzt werden. Erste Untersuchungen dazu zeigen eine Neigungsabhängigkeit optischer Sensoren, die zu systematischen Messabweichungen und erhöhten lithografischen Strukturbreiten führen. Um die Grundlage lithografischer Anwendungen auf geneigten Oberflächen zu schaffen, werden verschiedene Ansätze zur Kompensation vorgestellt. Basierend auf den grundlegenden Untersuchungen und Erkenntnissen wird eine Reihe von Vorschlägen entwickelt, die in weiterführenden Arbeiten das Messsystem, den Direct Laser Writing-Prozess sowie die Anwendbarkeit dieser Technik auf gekrümmten Oberflächen verbessert.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000188
Mohr-Weidenfeller, Laura;
Kombination von zweiphotonenbasiertem direktem Laserschreiben mit großflächiger und hochpräziser Nanopositionierung. - Ilmenau : Universitätsverlag Ilmenau, 2020. - 1 Online-Ressource (xii, 121 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die Mikro- und Nanofabrikation verspricht für die nächsten Jahre ein enormes Wachstumspotenzial, insbesondere auch im Bereich der laserbasierten Fertigung. Die hochauflösende Technik des Laserschreibens mittels Zwei-Photonen-Absorption (2PA) kann zur Herstellung von dreidimensionalen Bauteilen mit minimalen Strukturbreiten von sub-100 nm verwendet werden. Mit der optischen Präzision gehen auch Forderungen an die Präzision der Mess- und Positioniersysteme einher, um den technischen Stand von zweiphotonenbasiertem Laserschreiben weiter voranzutreiben. Die an der TU Ilmenau entwickelten Nanopositionier- und Nanomessmaschinen (NPM-Maschinen) ermöglichen eine hochgenaue und metrologisch rückführbare Positionierung mit Positionierauflösungen von 0,1 nm und einer Wiederholbarkeit von unter von 1 nm. Dabei eröffnet der Positionierbereich von 25 mm × 25 mm × 5mm bzw. von 200 mm × 200 mm × 25 mm der NPM-Maschinen ganz neue Dimensionen der skalenübergreifenden Fabrikation, sodass mikro- und sub-mikrometergenaue Artefakte bei Bauteilen mit Millimeterabmessungen erzielt werden können. In der vorliegenden Arbeit wird die Erweiterung von NPM-Maschinen zu Fabrikationsmaschinen durch die Kombination mit 2PA-Laserschreiben thematisiert. Dazu wird zunächst ein Konzept zur Integration der Zwei-Photonen-Technologie in eine NPM-Maschine entwickelt und umgesetzt. Anschließend erfolgen eine Charakterisierung des Systems sowie gezielte Untersuchungen, um den Nachweis für die Synergie der beiden Techniken zu erbringen. Es konnten diverse erfolgreiche Experimente durchgeführt werden, sodass nach Untersuchungen zur Belichtungsdosis die Herstellung von großflächigen Justiermarken gezeigt wurde. Das Potential der genauen Positionierung wird durch bahnbrechende Ergebnisse zur Abstandsreduzierung zwischen zwei geschriebenen Linien, welche die Beugungsbegrenzung unterschreiten, demonstriert. Zudem zeigten erste Versuche zur dreidimensionalen Strukturierung von Hybridpolymeren das enorme Potential für zukünftige komplexe 3D-Anwendungen in einer bisher nicht möglichen Präzision. Im Fokus stand außerdem die Entwicklung und Untersuchung eines neuen Ansatzes zur Mikro- und Nanofabrikation mit hohem Durchsatz, der auf einer Verbindung von zweiphotonenbasiertem Laserschreiben mit Feldemissionslithographie zur Herstellung von Mastern für anschließende Nanoprägelithographie basiert.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020000164
Fern, Florian;
Metrologie in fünfachsigen Nanomess- und Nanopositioniermaschinen. - Ilmenau : Universitätsbibliothek, 2020. - 1 Online-Ressource (VIII, 120 Seiten)
Technische Universität Ilmenau, Dissertation 2020

Die vorliegende Arbeit stellt ein neuartiges Konzept für eine fünfachsige Nanomessmaschine zur Messung von Formabweichungen auf stark gekrümmten Asphären oder Freiform-Flächen vor. Bis zu einem Anstieg von bis zu 60&ring; der Messobjektoberfläche kann der Sensor orthogonal zu dieser ausgerichtet werden. Unter vollständiger Einhaltung des Abbe-Komparatorprinzips wird das Messobjekt translatorisch in einem Bereich von 25mm 25mm 5mm relativ zu dem um zwei Rotationsachsen drehbaren Sensor bewegt. Die Messachsen der translatorischen Positionsmessung schneiden sich im so genannten Abbe-Punkt. Dieser Abbe-Punkt ist gleichzeitig auch der Antastpunkt des Sensors und der konstante Momentanpol der beiden Rotationsachsen zur Sensorrotation, die sich rechtwinklig in dem Abbe-Punkt schneiden. Zur Bestimmung der zufälligen und systematischen Positionsabweichungen des Sensors in Folge seiner Rotation wird ein Referenzmesssystem vorgestellt. Dieses besteht aus drei fest mit dem Sensor verbundenen, kartesisch angeordneten Fabry-Pérot-Interferometern, die kontinuierlich den Abstand des Sensors zu der Innenfläche einer Referenzhemisphäre messen. Die Messstrahlen der Fabry-Pérot-Interferometer schneiden sich dabei virtuell im Abbe-Punkt. Um die Formabweichung dieser Referenzhemisphäre zu bestimmen, wird ein in-situ-Kalibrierverfahren beschrieben, das die Bestimmung der Formabweichung mit den im System vorhanden Sensoren im Einbauzustand erlaubt. Dazu wird der Sensor durch einen Kugelreflektor im Abbe-Punkt (Kugellinse n=2) ersetzt. Dessen Positionsabweichung wird während der Rotation gemessen und zur Bestimmung der Formabweichung der Referenzhemisphäre genutzt. Basierend auf diesen Erkenntnissen wurde ein Prototyp des vorgestellten Konzepts aufgebaut und die Funktion des Referenzmesssystems verifiziert. Über einen großen translatorischen Verschiebungsbereich von 80 [my]m, kann die Verschiebung des Antastpunktes mit Hilfe des Referenzmesssystems auf +-200nm erfasst werden. Eine Wiederholungsmessung zwischen zwei Stellungen des Rotationssystems zeigte, dass die Antastpunktposition mit einer maximalen Abweichung von 27nm bestimmt werden kann. Die ausführliche theoretische Messunsicherheitsbetrachtung auf Grundlage von sechs Untermodellen ergibt eine Messunsicherheit für die Bestimmung des Antastpunktes von maximal 18nm p = 68%.



https://www.db-thueringen.de/receive/dbt_mods_00045605