Anzahl der Treffer: 251
Erstellt: Fri, 24 Mar 2023 23:18:00 +0100 in 0.0336 sec

Großmann, Max; Bohm, Sebastian; Heyder, Stefan; Schwarzburg, Klaus; Kleinschmidt, Peter; Runge, Erich; Hannappel, Thomas
Generalized modeling of photoluminescence transients. - In: Physica status solidi, ISSN 1521-3951, Bd. 260 (2023), 1, 2200339, S. 1-12

Time-resolved photoluminescence (TRPL) measurements and the extraction of meaningful parameters involve four key ingredients: a suitable sample such as a semiconductor double heterostructure, a state-of-the-art measurement setup, a kinetic model appropriate for the description of the sample behavior, and a general analysis method to extract the model parameters of interest from the measured TRPL transients. Until now, the last ingredient is limited to single curve fits, which are mostly based on simple models and least-squares fits. These are often insufficient for the parameter extraction in real-world applications. The goal of this article is to give the community a universal method for the analysis of TRPL measurements, which accounts for the Poisson distribution of photon counting events. The method can be used to fit multiple TRPL transients simultaneously using general kinematic models, but should also be used for single transient fits. To demonstrate this approach, multiple TRPL transients of a GaAs/AlGaAs heterostructure are fitted simultaneously using coupled rate equations. It is shown that the simultaneous fits of several TRPL traces supplemented by systematic error estimations allow for a more meaningful and more robust parameter determination. The statistical methods also quantify the quality of the description by the underlying physical model.
Bohm, Sebastian; Runge, Erich
Multiphysics simulation of fluid interface shapes in microfluidic systems driven by electrowetting on dielectrics. - In: Journal of applied physics, ISSN 1089-7550, Bd. 132 (2022), 22, S. 224702-1-224702-17

We present a highly efficient simulation method for the calculation of three-dimensional quasi-static interface shapes under the influence of electric fields. The method is especially useful for the simulation of microfluidic systems driven by electrowetting on dielectrics because it accounts automatically and inherently for the highly non-trivial interface shape in the vicinity of the triple-phase contact. In particular, the voltage independence of the local contact angle predicted based on analytical considerations is correctly reproduced in all our simulations. For the calculation of the shape of the interface, the geometry is triangulated and the mesh nodes are shifted until the system energy becomes minimal. The same mesh is also used to calculate the electric field using the boundary-element method. Therefore, only the surface of the geometry needs to be meshed, and no volume meshes are involved. The method can be used for the simulation of closed systems with a constant volume (e.g., droplet-based microfluidics) while preserving the volume very precisely as well as open systems (e.g., the liquid-air interface within micro-cavities or capillaries). Additional effects, such as the influence of gravitational forces, can easily be taken into account. In contrast to other efficient simulations, such as the volume-of-fluid, level-set, or phase-field methods, ideally, sharp interfaces are obtained. We calculate interface shapes for exemplary systems and compare with analytical as well as experimental results.
Moritz, Dominik Christian; Ruiz Alvarado, Isaac Azahel; Zare Pour, Mohammad Amin; Paszuk, Agnieszka; Frieß, Tilo; Runge, Erich; Hofmann, Jan Philipp; Hannappel, Thomas; Schmidt, W. Gero; Jaegermann, Wolfram
P-terminated InP (001) surfaces: surface band bending and reactivity to water. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 41, S. 47255-47261

Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by low-temperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.
Lauer, Kevin; Peh, Katharina; Schulze, Dirk; Ortlepp, Thomas; Runge, Erich; Krischok, Stefan
The ASi-Sii defect model of light-induced degradation (LID) in silicon: a discussion and review. - In: Physica status solidi, ISSN 1521-396X, Bd. 219 (2022), 19, 2200099, S. 1-10

The ASi-Sii defect model as one possible explanation for light-induced degradation (LID) in typically boron-doped silicon solar cells, detectors, and related systems is discussed and reviewed. Starting from the basic experiments which led to the ASi-Sii defect model, the ASi-Sii defect model (A: boron, or indium) is explained and contrasted to the assumption of a fast-diffusing so-called “boron interstitial.” An LID cycle of illumination and annealing is discussed within the conceptual frame of the ASi-Sii defect model. The dependence of the LID defect density on the interstitial oxygen concentration is explained within the ASi-Sii defect picture. By comparison of electron paramagnetic resonance data and minority carrier lifetime data related to the assumed fast diffusion of the “boron interstitial” and the annihilation of the fast LID component, respectively, the characteristic EPR signal Si-G28 in boron-doped silicon is related to a specific ASi-Sii defect state. Several other LID-related experiments are found to be consistent with an interpretation by an ASi-Sii defect.
Bohm, Sebastian; Phi, Hai Binh; Moriyama, Ayaka; Runge, Erich; Strehle, Steffen; König, Jörg; Cierpka, Christian; Dittrich, Lars
Highly efficient passive Tesla valves for microfluidic applications. - In: Microsystems & nanoengineering, ISSN 2055-7434, Bd. 8 (2022), 1, 97, S. 1-12

A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s^-1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed.
Karmo, Marsel; Ruiz Alvarado, Isaac Azahel; Schmidt, W. Gero; Runge, Erich
Reconstructions of the As-terminated GaAs(001) surface exposed to atomic hydrogen. - In: ACS omega, ISSN 2470-1343, Bd. 7 (2022), 6, S. 5064-5068

We explore the atomic structures and electronic properties of the As-terminated GaAs(001) surface in the presence of hydrogen based on ab initio density functional theory. We calculate a phase diagram dependent on the chemical potentials of As and H, showing which surface reconstruction is the most stable for a given set of chemical potentials. The findings are supported by the calculation of energy landscapes of the surfaces, which indicate possible H bonding sites as well as the density of states, which show the effect of hydrogen adsorption on the states near the fundamental band gap.
Selzer, Silas Aaron; Bauer, Fabian; Bohm, Sebastian; Bretschneider, Peter; Runge, Erich
Physik-geführte NARXnets (PGNARXnets) zur Zeitreihenvorhersage. - In: Proceedings 31. Workshop Computational Intelligence, (2021), S. 235-261

Bohm, Sebastian; Grunert, Malte; Honig, Hauke; Wang, Dong; Schaaf, Peter; Runge, Erich; Zhong, Jinhui; Lienau, Christoph
Optical properties of nanoporous gold sponges using model structures obtained from three-dimensional phase-field Simulation. - In: 2021 Photonics & Electromagnetics Research Symposium (PIERS), (2021), S. 517-523

Nanoporous sponge structures show fascinating optical properties related to a strong spatial localization of field modes and a resulting strong field enhancement. In this work, a novel efficient method for the generation of three-dimensional nanoporous sponge structures using time-resolved phase-field simulations is presented. The algorithm for creating the geometries and the underlying equations are discussed. Different sponge geometries are generated and compared with sponges that have been experimentally measured using FIB tomography. Meaningful parameters are defined for the comparison of the geometric properties of the random sponge structures. In addition, the optical properties of the simulated sponges are compared with the experimentally measured sponges. It is shown that a description using effective media does not provide a good agreement to the actual spectra. This shows that the optical properties are largely determined by the local structures. In contrast, the numerically obtained spectra of the phase-field sponge models accounting for the real-space structure show excellent agreement with the spectra of the experimentally measured sponges.
Phi, Hai Binh; Bohm, Sebastian; Runge, Erich; Strehle, Steffen; Dittrich, Lars
Wafer-level fabrication of an EWOD-driven micropump. - In: MikroSystemTechnik, (2021), S. 574-577

Bohm, Sebastian; Phi, Hai Binh; Moriyama, Ayaka; Dittrich, Lars; Runge, Erich
Dimensioning and characterisation of an EWOD-driven chipintegrated micropump using time-resolved simulations. - In: MikroSystemTechnik, (2021), S. 531-534