Simulation of heat transfer and propagation velocity for different heat loss conditions for guided propagation fronts in reactive multilayer foils. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2400523, S. 1-9
Engineering self-propagating reactions in reactive material systems requires an understanding of critical ignition and propagation conditions. These conditions are governed by the material properties of the reactive materials responsible for net heat generation, as well as by external environmental conditions that primarily determine net heat loss. In this study, it is aimed to utilize a numerical model to investigate the critical conditions for reaction propagation based solely on the heat-transfer equation, enabling thorough examination with significantly low computational effort. Comparing simulations with experiments demonstrates a high level of agreement in predicting reaction propagation. Additionally, this numerical model provides valuable information regarding heat distribution in substrate materials.
https://doi.org/10.1002/adem.202400523
Influence of additional intermediate thick Al layers on the reaction propagation and heat flow of Al/Ni reactive multilayers. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2400522, S. 1-8
This study investigates the effects of sputtering and electron beam evaporation (e-beam) on the microstructure and reactive properties of Al/Ni reactive multilayers (RMLs). The intermixing zone, a critical factor influencing reaction kinetics, is characterized using high-resolution transmission electron microscopy and found to be consistently 3 nm for both fabrication methods. Differential scanning calorimetry reveals that e-beam samples, with thicker Al layers, exhibit slightly higher total molar enthalpy and maintain high reaction temperatures despite reduced reaction velocities in comparison to sputtered samples. X-ray diffraction confirms the formation of both Al3Ni2 and AlNi phases in the e-beam samples. These findings indicate that while thicker bilayer structures reduce reaction velocity, they keep thermal output and mitigate the impact of intermixing zones, leading to similar total molar enthalpy. This analysis underscores the significance of deposition technique and bilayer thickness in optimizing the performance of Al/Ni RML, offering the possibility to establish different phase formations in thicker RML. It advances the control over the reactive properties of RMLs in their applications, for example, reactive bonding.
https://doi.org/10.1002/adem.202400522
Transfer of self-sustained reactions between thermally coupled reactive material elements. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2400870, S. 1-14
System engineering requires the implementation of assembly methods allowing the formation of functional elements according to a desired system design. This is possible by joining prefabricated elements on a desired place in the system or by forming functional materials at wanted locations. Both approaches need temperature treatment. A typical system in part consists of materials restricting the use of annealing procedures above 300 ˚C. For this reason, higher-temperature operations have to be localized to the point of use and transferred to the next reactive element. A further requirement is the reduction of the thermal budget of the localized joining process implementing ultrashort heat treatment operations. Reactive metallic multilayer offers the combined possibility of implementing a localized heat source and the formation of a functional intermetallic alloy. The article demonstrates the feasibility of a heat and reaction transfer chain in a topological structured pattern consisting of localized reactive multilayer materials under conditions of their gasless combustion. For the used Ni/Al multilayer material system, the critical (obstacle thickness) dimensions for the reaction and heat transfer are determined using a high-speed camera and pyrometer measurements.
https://doi.org/10.1002/adem.202400870
Patterned liquid micro rails for the transport of micrometer sized chips. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. n/a (2024), n/a, 2400235, S. 1-11
Transport and alignment of microscopic chips are important steps in microelectronics component integration with common approaches being pick-and-place, microfluidics, parallel transfer and self-assembly. An alternate transport approach of microscopic chips is proposed using patterned liquid micro rails as chaperones. The surface free energy and interfacial free energy minimization of all constituents enable the creation of stable pathways. This allows for chip-attachment to rails, while the liquid layer lubricates chip-sliding. Monorails, digital monorails, and digital birails are investigated for chip movement behavior. Chip position and speed can be controlled using liquid flow in closed chambers. Speeds from 10 to 400 mm s−1 are achieved with translation distances as long as 50 mm. It is discovered that chips can selectively cross rail discontinuities of up to 500 µm, allowing for chip position control through a stop-and-go motion. A programmable liquid rails-based chip conveyor system is demonstrated by transporting diodes to receptor sites where they undergo self-assembly.
https://doi.org/10.1002/admt.202400235
Defects contributing to hysteresis in few-layer and thin-film MoS2 memristive devices. - In: Materials, ISSN 1996-1944, Bd. 17 (2024), 6, 1350, S. 1-14
Molybdenum disulfide, a two-dimensional material extensively explored for potential applications in non-von Neumann computing technologies, has garnered significant attention owing to the observed hysteresis phenomena in MoS2 FETs. The dominant sources of hysteresis reported include charge trapping at the channel-dielectric interface and the adsorption/desorption of molecules. However, in MoS2 FETs with different channel thicknesses, the specific nature and density of defects contributing to hysteresis remain an intriguing aspect requiring further investigation. This study delves into memristive devices with back-gate modulated channel layers based on CVD-deposited flake-based and thin-film-based MoS2 FETs, with a few-layer (FL) and thin-film (TF) channel thickness. Analysis of current-voltage (I−V) and conductance-frequency (Gp/ω−f) measurements led to the conclusion that the elevated hysteresis observed in TF MoS2 devices, as opposed to FL devices, stems from a substantial contribution from intrinsic defects within the channel volume, surpassing that of interface defects. This study underscores the significance of considering both intrinsic defects within the bulk and the interface defects of the channel when analyzing hysteresis in MoS2 FETs, particularly in TF FETs. The selection between FL and TF MoS2 devices depends on the requirements for memristive applications, considering factors such as hysteresis tolerance and scaling capabilities.
https://doi.org/10.3390/ma17061350
A novel method for preparation of Al-Ni reactive coatings by incorporation of Ni nanoparticles into an Al matrix fabricated by electrodeposition in AlCl3:1-eethyl-3-methylimidazolium chloride (1.5:1) ionic liquid containing Ni nanoparticles. - In: Advanced engineering materials, ISSN 1527-2648, Bd. 0 (2024), 0, 2302217, S. 1-17
Al/Ni reactive coatings are fabricated via electrochemical deposition (ECD) at different applied voltages for reactive bonding application. AlCl3:1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) (1.5:1) ionic liquid electrolyte is used as source of Al, whereas Ni is in the bath and incorporated into final coatings as nanoparticles (NPs). Scanning electron microscopy and Auger electron spectroscopy reveal a homogeneous Ni particle dispersion, as well as a high amount of particle incorporation into the Al matrix. A maximum of 37 wt% (22 at%) of Ni is detected via atomic absorption spectroscopy in the Al/Ni coating deposited at −0.1 V from an electrolyte containing 20 g L−1 of Ni NPs. Previous literature show that for bonding application an ideal concentration is around 50 at% of Ni and 50 at% Al. However, this is achieved using high vacuum, time-consuming processes, and costly techniques like evaporation and magnetron sputtering. The ECD used in this work represents a more cost-efficient approach which is not reported up to date for the aforementioned application. The reactivity of the coatings is confirmed by Differential scanning calorimetry. Herein, an exothermic reaction is detected upon the mixing of Al and Ni occurring at high temperatures.
https://doi.org/10.1002/adem.202302217
Fundamentals and applications of gas phase electrodeposition. - Ilmenau : Universitätsbibliothek, 2024. - 1 Online-Ressource (147 Seiten)
Technische Universität Ilmenau, Dissertation 2024
In dieser Arbeit werden Grundlagen und Anwendungen der Gasphasen Elektrodeposition erarbeitet. Der Begriff steht für ein Zusammenspiel von Aerosolphysik und konventioneller Abscheidungstechnologie. Das aus einer Funkenentladung erzeugte Material wird durch einen Plasmastrahl direkt zu Punkten auf einem Substrat transportiert, wo sich das Material lokal oder in Mikrofilmen abscheidet. In dieser Arbeit wurden drei entscheidende theoretische Aspekte (i-iii) und drei praktische Aspekte (iv-vi) herausgearbeitet. (i) Die beiden Schlüsselparameter Funkenentladungsleistung und Trägergasfluss beeinflussen den von den geladenen Spezies getragenen elektrischen Strom, die erzeugte Masse/Größe der Nanopartikel und die resultierende Mikro-/Nanostrukturmorphologie. Langmuir-Sonden-Messungen zeigen mindestens zwei Transportzonen – eine vom Gasfluss dominierte und eine vom elektrischen Feld dominierte Zone. Die Gasströmung ist der Hauptfaktor, nicht nur für die Partikelgeschwindigkeit in der Transportzone, sondern auch für die Verteilung des elektrischen Potenzials und des elektrischen Feldes im Reaktor. In der Nähe des Substrats bildet sich ein elektrischer Feldgradient aus. Der Transport wechselt von der Gasströmung zum E-Feld. Die Komponente des elektrischen Feldes zeigt zur Oberfläche hin. (ii) Der elektrische Strom und die gravimetrische Analyse zeigen, dass die Stickstoff Ionen im Vergleich zu den erzeugten Metallpartikeln deutlich in der Überzahl sind. In Anbetracht der Mikro-/Nanostrukturmorphologie erweist sich die Leistung der Entladung als der wichtigste Parameter. Eine niedrige Funkenleistung in Verbindung mit einem geringen Gasfluss führt zu dendritischen Partikeln. Im Gegensatz dazu führt eine höhere Funkenleistung in Verbindung mit einem höheren Gasfluss zu kompakten Schichten. Dieses zweidimensionale Parameterfeld ermöglicht eine maßgeschneiderte Schichtmorphologie und Abscheiderate. (iii) Bei konstantem Gasdurchsatz führt ein kleinerer Reaktordurchmesser zu einem turbulenteren Strömungsverhalten. Dieses Verhalten ist unabhängig vom Gaseinlass, der die Partikelkonzentration im Plasmastrahl beeinflusst. Ein statistisches Modell führt zu einem besseren Verständnis der Gasphasen Elektrodeposition. Zusätzlich zur üblichen Standarddiffusion treten in eine bestimmte Richtung auch lange super-diffusive Flüge der erzeugten Teilchen auf, wenn ein zusätzliches elektrisches Feld vorhanden ist. Die gewonnenen theoretischen Erkenntnisse halfen bei der Gasphasen Elektrodeposition von (iv) Mikrofilmen, (v) lokalisierten selbstausrichtenden lateralen Metall-Nanobrücken und (vi) lokalisierten selbstausrichtenden vertikalen Leiterbahnen.
https://doi.org/10.22032/dbt.59621
Electrical lengths and phase constants of stretchable coplanar transmission lines at GHz frequencies. - In: Flexible and printed electronics, ISSN 2058-8585, Bd. 9 (2024), 1, 015005, S. 1-12
Elastic, bendable and stretchable electronics establish a new and promising area of multi-physics engineering for a variety of applications, e.g. on wearables or in complex-shaped machine parts. While the area of metamorphic electronics has been investigated comprehensively, the behavior at radio frequencies (RFs), especially in the GHz range, is much less well studied. The mechanical deformation of the soft substrates, for instance, due to stretching, changes the geometrical dimensions and the electrical properties of RF transmission lines. This effect could be desirable in some cases, e.g. for smart devices with shape-dependent transmission or radiation characteristics, or undesirable in other cases, e.g. in feed and distribution networks due to the variable electrical lengths and thus phase variations. This contribution describes the results of a systematic study of the broadband RF properties of coplanar transmission lines on Ecoflex® substrates, based on numerical simulations and experimental data. Two types of stretchable transmission line structures were studied: Meander- and circular ring-segmented lines. Modeling and simulation were performed combining a 2D circuit simulation software with electromagnetic full-wave simulations. The experimental part of the work included the fabrication of metamorphic substrates metallized with thin copper layers and systematic measurements of the electrical lengths and phase constants of coplanar waveguides in the frequency range from 1 to 5 GHz based on vector network analysis for different stretching levels. With the given substrate technology, we succeeded in demonstrating stretchability up to a level of 21%, while the theoretical limit is expected at 57%. The meander- and circular-shaped line structures revealed markedly different sensitivities to the stretching level, which was lower for circular structures compared to the meander structures by approximately a factor of three.
https://doi.org/10.1088/2058-8585/ad1efd
Modelling reaction transfer velocities in disconnected compact heterogeneous multilayer reactive material systems. - In: MRS advances, ISSN 2059-8521, Bd. 9 (2024), 10, S. 797-802
The tuning of the self-propagating reaction is studied theoretically by introducing a non-reactive material between two reactive material elements. For the study, the Ni/Al bilayer system was chosen. The Ni/Al elements were placed on a silicon wafer covered with a 1-µm-thick silicon dioxide. The spaces between the multilayer reactive material elements were filled with different non-reactive materials covering a wide range of thermal properties. On top of this heterogeneous layer, a 1-µm-thick sealing layer was placed consisting of the filler material. The carried out two-dimensional simulations demonstrated that embedding material allows to scale the ignition transfer time and the heat propagation velocity. For example, for a transfer length of 1 µm, the ignition time can be tuned from nano- to microseconds. Consequently, in contrast to previous results embedding materials allow scaling the properties of the self-propagating reaction in heterogeneous reactive material systems.
https://doi.org/10.1557/s43580-024-00822-3
Controlling reaction transfer between Al/Ni reactive multilayer elements on substrates. - In: MRS advances, ISSN 2059-8521, Bd. 9 (2024), 10, S. 784-789
Reactive multilayers produce exothermic reaction with definite velocity and maximum temperature after ignition, which are the fundamental properties of the reactive multilayer systems. The generated heat with certain velocity makes it widely used in joining, bonding in the packaging, thermal batteries and many more applications. In this work, a distinct approach for achieving a reaction transfer between the reactive multilayers and different materials is demonstrated which can affect the generated temperature and velocity from the self-propagating properties of the reaction. For these intensions, we fabricated the Al/Ni reactive elements with certain separations between elements which allow to observe the reaction front transfer and emitted temperature in the reaction chain. The created separation between reactive elements are periodical and ordered systems with different thermal conductive properties. The temperature and definite velocity were measured by time-resolved pyrometer and high-speed camera measurements. SEM analysis showed the characteristics of the reaction transfer between reactive multilayer elements. It is predicted that: (I) The reaction front stops at a space with critical length; (II) Reducing heat loss through the substrate supports reaction front propagation through spaces; (III) Thermal property design of the spaces between the reactive elements enables property modification of the self-propagating reaction.
https://doi.org/10.1557/s43580-024-00804-5