Publikationen an der Fakultät für Informatik und Automatisierung ab 2015

Anzahl der Treffer: 1933
Erstellt: Thu, 16 May 2024 23:11:34 +0200 in 0.1429 sec


Dinh, Christoph; Samuelsson, John G.; Hunold, Alexander; Hämäläinen, Matti S.; Khan, Sheraz
Contextual MEG and EEG source estimates using spatiotemporal LSTM networks. - In: Frontiers in neuroscience, ISSN 1662-453X, Bd. 15 (2021), 552666, S. 1-15

Most magneto- and electroencephalography (M/EEG) based source estimation techniques derive their estimates sample wise, independently across time. However, neuronal assemblies are intricately interconnected, constraining the temporal evolution of neural activity that is detected by MEG and EEG; the observed neural currents must thus be highly context dependent. Here, we use a network of Long Short-Term Memory (LSTM) cells where the input is a sequence of past source estimates and the output is a prediction of the following estimate. This prediction is then used to correct the estimate. In this study, we applied this technique on noise-normalized minimum norm estimates (MNE). Because the correction is found by using past activity (context), we call this implementation Contextual MNE (CMNE), although this technique can be used in conjunction with any source estimation method. We test CMNE on simulated epileptiform activity and recorded auditory steady state response (ASSR) data, showing that the CMNE estimates exhibit a higher degree of spatial fidelity than the unfiltered estimates in the tested cases.



https://doi.org/10.3389/fnins.2021.552666
Mulyadi, Indra Hardian; Fiedler, Patrique; Eichardt, Roland; Haueisen, Jens; Supriyanto, Eko
Pareto optimization for electrodes placement: compromises between electrophysiological and practical aspects. - In: Medical & biological engineering & computing, ISSN 1741-0444, Bd. 59 (2021), 2, S. 431-447

Wearable electronics and sensors are increasingly popular for personal health monitoring, including smart shirts containing electrocardiography (ECG) electrodes. Optimal electrode performance requires careful selection of the electrode position. On top of the electrophysiological aspects, practical aspects must be considered due to the dynamic recording environment. We propose a new method to obtain optimal electrode placement by considering multiple dimensions. The electrophysiological aspects were represented by P-, R-, and T-peak of ECG waveform, while the shirt-skin gap, shirt movement, and regional sweat rate represented the practical aspects. This study employed a secondary data set and simulations for the electrophysiological and practical aspects, respectively. Typically, there is no ideal solution that maximizes satisfaction degrees of multiple electrophysiological and practical aspects simultaneously; a compromise is the most appropriate approach. Instead of combining both aspects - which are independent of each other - into a single-objective optimization, we used multi-objective optimization to obtain a Pareto set, which contains predominant solutions. These solutions may facilitate the decision-makers to decide the preferred electrode locations based on application-specific criteria. Our proposed approach may aid manufacturers in making decisions regarding the placement of electrodes within smart shirts.



https://doi.org/10.1007/s11517-021-02319-9
Chen, Zhiwen; Liu, Chang; Ding, Steven X.; Peng, Tao; Yang, Chunhua; Gui, Weihua; Shardt, Yuri A. W.
A just-in-time-learning-aided canonical correlation analysis method for multimode process monitoring and fault detection. - In: IEEE transactions on industrial electronics, Bd. 68 (2021), 6, S. 5259-5270

In this article, a just-in-time-learning (JITL)-aided canonical correlation analysis (CCA) is proposed for the monitoring and fault detection of multimode processes. A canonical correlation analysis (CCA)-based fault detection method has been applied to single-operating-mode processes. However, CCA has limitations in handling processes with multiple operating points. These limitations are illustrated by a numerical example. To reduce the time for searching relevant data, K-means is integrated into the JITL to build the local CCA model. Furthermore, the proposed method is compared with commonly used kernel-based methods in terms of computational complexity and interpretability of the results. Finally, the validity and efficacy of the proposed method are shown using an industrial benchmark process. Results show that the proposed method has better performance than conventional methods in terms of fault detection rate while still tracking changes in the system.



https://doi.org/10.1109/TIE.2020.2989708
Zeidan, Mohamad; Li, Pu; Ostfeld, Avi
DMA segmentation and multiobjective optimization for trading off water age, excess pressure, and pump operational cost in water distribution systems. - In: Journal of water resources planning and management, ISSN 1943-5452, Bd. 147 (2021), 4, S. 04021006

This study presents a heuristic multiobjective approach for segmenting and operating water distribution systems (WDS). The methodology employs a two-pronged strategy: the first is a heuristic method for dividing the network into clusters (i.e., district metering areas) based on connectivity analysis. The second is the application of the evolutionary multiobjective optimization method non-dominated sorting genetic algorithm (NSGA)-II for trading off the operational cost, excess pressure (serving as a proxy to leakage reduction), and water age (acting as a surrogate to water quality) in the WDS. Three example applications of increasing complexities with various cluster partitioning are explored, showing a clear trade-off among the objectives. This study introduces an unprecedented heuristic approach for jointly solving the multiobjective problem under a given system partitioning. However, by enforcing a priori clustering formation (rather than including it in the optimization), optimality, completeness, and precision are compromised in favor of computational speed and effort. Thus, additional sensitivities need to be conducted outside of the optimization for the clusters’ impact. Challenges of extending this study are in embedding the clusters’ formations in the optimization considering other objectives such as residual capacity, developments of other optimization frameworks outside of the generic link of simulation-optimization, and uncertainty inclusion (e.g., in demands). All data and codes are included for allowing full replications and comparisons.



https://doi.org/10.1061/(ASCE)WR.1943-5452.0001344
Mosayebi Samani, Mohsen; Jamil, Asif; Salvador, Ricardo; Ruffini, Giulio; Haueisen, Jens; Nitsche, Michael
The impact of individual electrical fields and anatomical factors on the neurophysiological outcomes of tDCS: a TMS-MEP and MRI study. - In: Brain stimulation, ISSN 1876-4754, Bd. 14 (2021), 2, S. 316-326

Background - Transcranial direct current stimulation (tDCS), a neuromodulatory non-invasive brain stimulation technique, has shown promising results in basic and clinical studies. The known interindividual variability of the effects, however, limits the efficacy of the technique. Recently we reported neurophysiological effects of tDCS applied over the primary motor cortex at the group level, based on data from twenty-nine participants who received 15min of either sham, 0.5, 1.0, 1.5 or 2.0 mA anodal, or cathodal tDCS. The neurophysiological effects were evaluated via changes in: 1) transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP), and 2) cerebral blood flow (CBF) measured by functional magnetic resonance imaging (MRI) via arterial spin labeling (ASL). At the group level, dose-dependent effects of the intervention were obtained, which however displayed interindividual variability. - Method - In the present study, we investigated the cause of the observed inter-individual variability. To this end, for each participant, a MRI-based realistic head model was designed to 1) calculate anatomical factors and 2) simulate the tDCS- and TMS-induced electrical fields (EFs). We first investigated at the regional level which individual anatomical factors explained the simulated EFs (magnitude and normal component). Then, we explored which specific anatomical and/or EF factors predicted the neurophysiological outcomes of tDCS. - Results - The results highlight a significant negative correlation between regional electrode-to-cortex distance (rECD) as well as regional CSF (rCSF) thickness, and the individual EF characteristics. In addition, while both rCSF thickness and rECD anticorrelated with tDCS-induced physiological changes, EFs positively correlated with the effects. - Conclusion - These results provide novel insights into the dependency of the neuromodulatory effects of tDCS on individual physical factors.



https://doi.org/10.1016/j.brs.2021.01.016
Jaufenthaler, Aaron; Kornack, Thomas; Lebedev, Victor; Limes, Mark E.; Körber, Rainer; Liebl, Maik; Baumgarten, Daniel
Pulsed optically pumped magnetometers: addressing dead time and bandwidth for the unshielded magnetorelaxometry of magnetic nanoparticles. - In: Sensors, ISSN 1424-8220, Bd. 21 (2021), 4, 1212, insges. 19 S.

https://doi.org/10.3390/s21041212
Sattler, Kai-Uwe;
Hardware acceleration of modern data management. - In: Advances in engineering research and application, (2021), S. 3

Over the past thirty years, database management systems have been established as one of the most successful software concepts. In todays business environment they constitute the centerpiece of almost all critical IT systems. The reasons for this success are manyfold. On the one hand, such systems provide abstractions hiding the details of underlying hardware or operating systems layers. On the other hand, database management systems are ACID compliant, which enables them to represent an accurate picture of a real world scenario, and ensures correctness of the managed data.However, the currently used database concepts and systems are not well prepared to support emerging application domains such as eSciences, Industry 4.0, Internet of Things or Digital Humanities. Furthermore, volume, variety, veracity as well as velocity of data caused by ubiquitous sensors have to be mastered by massive scalability and online processing by providing traditional qualities of database systems like consistency, isolation and descriptive query languages. At the same time, current and future hardware trends provide new opportunities such as many-core CPUs, co-processors like GPU and FPGA, novel storage technologies like NVRAM and SSD as well as high-speed networks provide new opportunities.In this talk we present our research results for the use of modern hardware architectures for data management. We discuss the design of data structures for persistent memory and the use of accelerators like GPU and FPGA for database operations.



https://doi.org/10.1007/978-3-030-64719-3_1
Blum, Maren-Christina; Solf, Benjamin; Hunold, Alexander; Klee, Sascha
Effects of ocular direct current stimulation on full field electroretinogram. - In: Frontiers in neuroscience, ISSN 1662-453X, Bd. 15 (2021), 606557, S. 1-9

https://doi.org/10.3389/fnins.2021.606557
Gresing, Lennart J.; Radon, Patricia; Friedrich, Ralf P.; Zahn, Diana; Raasch, Martin; Mosig, Alexander S.; Dutz, Silvio; Alexiou, Christoph; Wiekhorst, Frank; Hochhaus, Andreas; Clement, Joachim H.
Negatively charged magnetic nanoparticles pass the blood-placenta barrier under continuous flow conditions in a time-dependent manner. - In: Journal of magnetism and magnetic materials, ISSN 1873-4766, Volume 521 (2021), part 2, 167535

The transfer of substances via the blood-placenta barrier is tightly regulated and critical for the fetus and the expecting mother. In case of necessary medical interventions during pregnancy a comprehensive knowledge about the interaction of the drugs with this barrier is indispensable. Therefore well-engineered test systems are needed and valuable transport systems are helpful. We developed an in vitro microfluidic blood-placenta barrier system consisting of the human trophoblast cell line BeWo and human primary placental pericytes. The integrity and stability of the model was verified by a permeability assay and immunocytochemistry. As potential drug carriers magnetic nanoparticles with various coatings were applied and their ability to pass the barrier was quantified by magnetic particle spectroscopy. We could demonstrate that up to 4% of negatively charged nanoparticles pass the barrier in a time-dependent manner.



https://doi.org/10.1016/j.jmmm.2020.167535
Mosayebi Samani, Mohsen;
Optimizing the neuroplastic effects of cathodal transcranial direct current stimulation over the primary motor cortex and transferability to prefrontal cortex. - Ilmenau : Universitätsbibliothek, 2021. - 1 Online-Ressource (195 Seiten)
Technische Universität Ilmenau, Dissertation 2021

Die Behandlungsmöglichkeiten neurologischer und neuropsychiatrischer Erkrankungen haben sich in den letzten Jahrzehnten deutlich verbessert, sind aber immer noch eingeschränkt. Eine Dysregulation oder Störung der Neuroplastizität ist bei vielen psychischen und Hirnfunktionsstörungen beteiligt. Hier sind nicht-invasive Hirnstimulationstechniken relevant, die die Plastizität des Gehirns modulieren, ohne die physische Integrität des Schädels zu beeinträchtigen. Eine davon, die transkranielle Gleichstromstimulation (tDCS), hat in mehreren klinischen Pilotstudien vielversprechende Ergebnisse zur Verminderung von Symptomen auf der Grundlage von Störungen des Zentralnervensystems gezeigt. Diese Effekte sind jedoch häufig moderat, zeigen eine nichtlineare Dosisabhängigkeit und eine interindividuelle Variabilität. Um die Wirksamkeit dieses Verfahrens zu verbessern, sind länger anhaltende und homogenere Effekte erforderlich. Dies erfordert neuartige, verbesserte Interventionsstrategien. Darüber hinaus wurden die neuromodulatorischen Wirkungen von tDCS auf den primären motorischen Kortex bisher weitgehend als Grundlage für die Anwendung dieser Intervention auf andere Hirnregionen herangezogen, während eine direkte Untersuchung der physiologischen Wirkungen von tDCS auf nichtmotorische Regionen weitgehend fehlt. Die Arbeit zielt darauf ab, diese Herausforderungen durch den Einsatz innovativer neurophysiologischer und mathematischer Techniken anzugehen, um die Wirksamkeit des kathodalen tDCS über dem primären motorischen Kortex zu verbessern, aber auch die Übertragbarkeit der Ergebnisse auf den präfrontalen Kortex zu untersuchen. Zu diesem Zweck titrierten wir im ersten Schritt systematisch kathodale tDCS-Parameter für das humane motorische Kortexmodell mit unterschiedlichen Intensitäten (1, 2 und 3 mA) und Stimulationsdauern (15, 20 und 30 min). Die Ergebnisse zeigten intensitätsabhängige nichtlineare Effekte, bei denen die Stimulation mit 1 mA eine signifikante Verringerung der Amplitude der motorisch evozierten Potentiale (MEP) induzierte, während die Stimulation mit 2 mA zu einer signifikanten Erhöhung der kortikospinalen Erregbarkeit führte. Protokolle mit höherer Stimulationsintensität (insbesondere Stimulation mit 3 mA) induzierten erneut eine signifikante Verringerung der Erregbarkeit, die etwa eineinhalb Stunden nach der Stimulation andauerte, und waren daher effizienter als die anderen Protokolle. Im zweiten Schritt haben wir untersucht, ob wiederholte tDCS-Protokolle mit unterschiedlichen Intervallen die Nacheffekte verlängern können. Wir verglichen die Auswirkungen von Einzelinterventionen mit konventioneller (1 mA für 15 Minuten) und optimierter kathodaler tDCS (3 mA für 20 Minuten) mit den Auswirkungen einer wiederholten Anwendung in Intervallen von 20 Minuten und 24 Stunden auf die Erregbarkeit des primären motorischen Kortex, basierend auf tierexperimentellen Befunden, dass kurze, aber nicht lange Intervalle zwischen einzelnen Interventionen eine langanhaltende Plastizität erzeugen. Die Ergebnisse zeigten, dass die Dauer der Nacheffekte wiederholter konventioneller und optimierter Protokolle mit kurzen Intervallen im Vergleich zu den jeweiligen Einzelinterventionsprotokollen nahezu unverändert blieb. Für das lange Intervall (24 h) veränderte die Stimulation mit dem herkömmlichen Protokoll die jeweiligen Nachwirkungen nicht signifikant, während sie die Wirksamkeit des optimierten Protokolls im Vergleich zu den jeweiligen Einzelinterventionen verringerte. Ein wichtiges Ergebnis der ersten Studie waren die beobachteten nichtlinearen intensitätsabhängigen Effekte von tDCS, die eine Erklärung für teilweise heterogene Ergebnisse der kathodalen Stimulation bieten können, allerdings hinsichtlich ihrer neurophysiologischen Grundlagen bisher nur unzureichend untersucht waren. Im dritten Schritt haben wir daher die zugrunde liegenden Mechanismen dieser nonlinearen Effekte untersucht. Da tDCS eine NMDA-Rezeptor-abhängige Neuroplastizität erzeugt, die Kalzium-abhängig ist, kann eine solche Nichtlinearität möglicherweise durch unterschiedliche durch die Intervention induzierte Kalziumkonzentrationen erklärt werden, die die Richtung der Plastizität steuern. Wir verabreichten daher den Kalziumkanalblocker Flunarizin in niedrigen (2,5 mg), mittleren (5 mg) oder hohen (10 mg) Dosierungen vor der kathodalen tDCS des motorischen Kortex mit 3 mA für 20 Minuten. Die Ergebnisse zeigten, dass die durch kathodale tDCS hoher Intensität induzierten inhibitorischen Nachwirkungen bei niedrigen, mittleren bzw. hohen Dosierungen eines Kalziumblockers nicht verändert, verringert oder in eine Erregbarkeitserhöhung modifiziert wurden, was die Kalzium-abhängige Direktionalität von tDCS-induzierter Neuroplastizität bestätigt. Das Ergebnis der ersten und zweiten Studie zeigten eine relevante interindividuelle Variabilität der tDCS-Effekte, die eine weitere Quelle für die begrenzte Wirksamkeit dieser Intervention sein könnte. Jüngste In-vivo-Experimente und Computerstudien am Menschen zeigten, dass das tDCS-induzierte elektrische Feld (EF) stark von der individuellen Anatomie des Gehirns und den Leitfähigkeitseigenschaften des Gewebes abhängt. Die EF-Variabilität könnte daher ein wichtiger Faktor für heterogene Ergebnisse der tDCS sein. Im vierten Schritt, basierend auf neurophysiologischen Daten, die in früheren Studien unserer Gruppe erhoben wurden, die tDCS-induzierte MEP- (induziert durch transkranielle Magnetstimulation (TMS)) und zerebrale Blutfluss-Veränderungen (CBF; gemessen durch funktionelle Magnetresonanztomographie (MRT) über arterielles Spin-Labelling) erfaßten, untersuchten wir den Zusammenhang zwischen einzelnen anatomischen Faktoren, tDCS-induziertem EF und den jeweiligen physiologischen Parametern auf der Ebene des Individuums. Zu diesem Zweck wurde für jeden Teilnehmer ein MRT-basiertes realistisches Kopfmodell entworfen, um 1) anatomische Faktoren zu berechnen und 2) die tDCS- und TMS-induzierten elektrischen Felder (EF) zu simulieren. Anschließend untersuchten wir auf regionaler Ebene, welche einzelnen anatomischen Faktoren die simulierten EFs erklären. Schließlich untersuchten wir, welche spezifischen anatomischen und / oder EF-Faktoren die neurophysiologischen Ergebnisse der tDCS vorhersagten. Die Ergebnisse zeigten, dass von den untersuchten anatomischen Faktoren höhere EF-Werte mit einem geringeren Abstand zwischen Elektrode und Kortex (ECD) und einer geringeren Dicke des Liquor cerebrospinalis (CSF) verbunden waren. Zusätzlich waren CSF-Dicke und ECD negativ korreliert, während EFs positiv mit tDCS-induzierten physiologischen Veränderungen korreliert waren. Schließlich untersuchten wir im fünften Schritt die Übertragbarkeit der durch kathodale tDCS induzierten Neuroplastizität vom motorischen auf den präfrontalen Kortex. Die neurophysiologischen Wirkungen von tDCS auf den primärmotorischen Kortex wurden bereits in einer vielzahl von Studien untersucht. Viel weniger ist jedoch hinsichtlich physiologischer Effekte der tDCS auf nichtmotorische Bereiche wie den präfrontalen Kortex bekannt, der eine wichtige Basis für vielfältige kognitive Funktionen darstellt und dessen Dysfunktionen an neuropsychiatrischen Störungen beteiligt sind. Zu diesem Zweck wurde kathodale tDCS mit niedrigen, mittleren und hohen Dosierungen oder eine Placebo-Stimulation über dem primärmotorischen und dorsolateralen präfrontalen Kortex appliziert. Die Nacheffekte der tDCS wurden mittels TMS-Elektroenzephalographie (EEG) und TMS-MEP auf regionaler Ebene für die Ergebnisparameter TMS-evozierte Potentiale (TEP), TMS-evozierte Oszillationen und MEP-Amplitudenänderungen bewertet. Die Ergebnisse zeigten eine dosisabhängige nichtlineare neurophysiologische Wirkung der tDCS über dem motorischen Kortex, die nicht vollständig auf die Ergebnisse der tDCS über dem präfrontalen tDCS übertragbar war. Niedrige und hohe Dosierungen der tDCS über dem motorischen Kortex reduzierten frühe positive TEP-Peaks und MEP-Amplituden, während eine Erhöhung der Amplituden dieser Potentiale für primärmotorische tDCS mit mittlerer Dosierung beobachtet wurde. Im Gegensatz dazu reduzierte präfrontale tDCS mit niedriger, mittlerer und hoher Dosierung die frühen positiven TEP-Amplituden gleichermaßen. Darüber hinaus wurden für beide kortikalen Bereiche keine tDCS-induzierten neuromodulatorischen Effekte auf späte TEP-Amplituden (mit Ausnahme präfrontaler tDCS mit niedriger Dosierung) oder TMS-evozierte Oszillationen beobachtet. Zusammengenommen hat diese Arbeit unter Verwendung innovativer neurophysiologischer, Computergestützter und bildgebender Verfahren wichtige Aspekte in Bezug auf tDCS-induzierte neuroplastische Effekte untersucht, und liefert neue Erkenntnisse für zukünftige Anwendungen von tDCS in Grundlagen- und klinischen Studien.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2021000014