Publikationen an der Fakultät für Mathematik und Naturwissenschaften ab 2019

Anzahl der Treffer: 902
Erstellt: Fri, 03 May 2024 23:10:15 +0200 in 0.0937 sec


Peh, Katharina; Flötotto, Aaron; Lauer, Kevin; Schulze, Dirk; Bratek, Dominik; Krischok, Stefan
Calibration of low-temperature photoluminescence of boron-doped silicon with increased temperature precision. - In: Physica status solidi, ISSN 1521-3951, Bd. 260 (2023), 10, 2300300, S. 1-5

https://doi.org/10.1002/pssb.202300300
Assanova, Anar; Trunk, Carsten; Uteshova, Roza
On the solvability of boundary value problems for linear differential-algebraic equations with constant coefficients. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (7 Seiten). - (Preprint ; M23,06)

We study a two-point boundary value problem for a linear differential-algebraic equation with constant coefficients by using the method of parameterization. The parameter is set as the value of the continuously differentiable component of the solution at the left endpoint of the interval. Applying the Weierstrass canonical form to the matrix pair associated with the differential-algebraic equation, we obtain a criterion for the unique solvability of the problem.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200182
Mazétyté-Stasinskiené, Raminta; Kronfeld, Klaus-Peter; Köhler, Michael
Five-level structural hierarchy: microfluidically supported synthesis of core-shell microparticles containing nested set of dispersed metal and polymer micro and nanoparticles. - In: Particle & particle systems characterization, ISSN 1521-4117, Bd. 14 (2023), 10, 2300030, S. 1-13

This study presents the development of a hierarchical design concept for the synthesis of multi-scale polymer particles with up to five levels of organization. The synthesis of core-shell microparticles containing nested sets of dispersed metal and polymer micro- and nanoparticles is achieved through in situ photopolymerization using a double co-axial capillaries microfluidic device. The flow rates of the carrier, shell, and core phases are optimized to control particle size and result in stable core-shell particles with well-dispersed three-level composites in the shell matrix. The robustness and reversibility of these core-shell particles are demonstrated through five cycles of drying and re-swelling, showing that the size and structure of core-shell particles remain unchanged. Additionally, the permeability and mobility of dye molecules within the shell matrix are tested and showed that different molecular weight dyes have different penetration times. This study highlights the potential of microfluidics as a powerful tool for the controlled and precise synthesis of complex structured materials and demonstrates the versatility and potential of these core-shell particles for sensing applications as particle-based surface-enhanced Raman scattering (SERS).



https://doi.org/10.1002/ppsc.202300030
Mathew, Sobin; Abedin, Saadman; Kurtash, Vladislav; Lebedev, Sergei P.; Lebedev, Alexander A.; Hähnlein, Bernd; Stauffenberg, Jaqueline; Jacobs, Heiko O.; Pezoldt, Jörg
Evaluation of hysteresis response in achiral edges of graphene nanoribbons on semi-insulating SiC. - In: Materials science forum, ISSN 1662-9752, Bd. 1089 (2023), S. 15-22

Hysteresis response of epitaxially grown graphene nanoribbons devices on semi-insulating 4H-SiC in the armchair and zigzag directions is evaluated and studied. The influence of the orientation of fabrication and dimensions of graphene nanoribbons on the hysteresis effect reveals the metallic and semiconducting nature graphene nanoribbons. The hysteresis response of armchair based graphene nanoribbon side gate and top gated devices implies the influence of gate field electric strength and the contribution of surface traps, adsorbents, and initial defects on graphene as the primary sources of hysteresis. Additionally, passivation with AlOx and top gate modulation decreased the hysteresis and improved the current-voltage characteristics.



https://doi.org/10.4028/p-i2s1cm
Endres, Patrick; Schütt, Timo; Kimmig, Julian; Bode, Stefan; Hager, Martin; Geitner, Robert; Schubert, Ulrich Sigmar
Oxymethylene ether (OME) fuel catalyst screening using in situ NMR spectroscopy. - In: Chemistry - a European journal, ISSN 1521-3765, Bd. 29 (2023), 33, e202203776, S. 1-9

Online NMR measurements are introduced in the current study as a new analytical setup for investigation of the oxymethylene dimethyl ether (OME) synthesis. For the validation of the setup, the newly established method is compared with state-of-the-art gas chromatographic analysis. Afterwards, the influence of different parameters, such as temperature, catalyst concentration and catalyst type on the OME fuel formation based on trioxane and dimethoxymethane is investigated. As catalysts, AmberlystTM 15 (A15) and trifluoromethanesulfonic acid (TfOH) are utilized. A kinetic model is applied to describe the reaction in more detail. Based on these results, the activation energy (A15: 48.0 kJ mol^-1 and TfOH: 72.3 kJ mol^-1) and the order in catalyst (A15: 1.1 and TfOH: 1.3) are calculated and discussed.



https://doi.org/10.1002/chem.202203776
Chao, Xin; Yan, Chengzhan; Zhao, Huaping; Wang, Zhijie; Lei, Yong
Micro-nano structural electrode architecture for high power energy storage. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 44 (2023), 5, 050201, S. 1-6

https://doi.org/10.1088/1674-4926/44/5/050201
Adamopoulos, Nikolaos D.; Tsierkezos, Nikos; Ntziouni, Afroditi; Zhang, Fu; Terrones, Mauricio; Kordatos, Konstantinos V.
Synthesis, characterization, and electrochemical performance of reduced graphene oxide decorated with Ag, ZnO, and AgZnO nanoparticles. - In: Carbon, ISSN 1873-3891, Bd. 213 (2023), 118178

Graphene oxide (GO) derived from the oxidization of graphite exhibits high specific surface area with potential in electrochemical applications. Furthermore, silver and zinc oxide nanoparticles, further denoted as AgNPs and ZnONPs, respectively, display superior physicochemical and electronic properties, that would significantly improve the electrocatalytic properties by being applied in electrochemical sensing. Consequently, in the present work, three different hybrid nanomaterials consisting of reduced graphene oxide (rGO) modified with either AgNPs, ZnONPs, or combined AgZnONPs were synthesized and characterized. The synthesis of GO was performed by a modified Hummer's method, while the decoration of GO with the nanoparticles was carried out by self-assembly solvothermal processes. The Ag-rGO, ZnO-rGO, and AgZnO-rGO nanocomposite hybrid materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy (EDX). Furthermore, the electrochemical responses of the fabricated nanocomposites towards the standard ferrocyanide/ferricyanide [Fe(CN)6]3-/4- redox system were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The results have been explained in terms of structural differences between the nanoparticles formed on the surface of the fabricated nanocomposite materials. Namely, the improved electrochemical performance of ZnO-rGO can be attributed to the high surface to volume ratio of ZnO, which provides greater area of electrode/electrolyte junction and consequently, large number of sites at the electrolyte-ZnO interface. The aim of the present work is the fabrication of novel high-performance rGO-based nanomaterials for applications in electrochemical sensing.



https://doi.org/10.1016/j.carbon.2023.118178
Gravelle, Simon; Haber-Pohlmeier, Sabina; Mattea, Carlos; Stapf, Siegfried; Holm, Christian; Schlaich, Alexander
NMR investigation of water in salt crusts: insights from experiments and molecular simulations. - In: Langmuir, ISSN 1520-5827, Bd. 39 (2023), 22, S. 7548-7556

The evaporation of water from bare soil is often accompanied by the formation of a layer of crystallized salt, a process that must be understood in order to address the issue of soil salinization. Here, we use nuclear magnetic relaxation dispersion measurements to better understand the dynamic properties of water within two types of salt crusts: sodium chloride (NaCl) and sodium sulfate (Na2SO4). Our experimental results display a stronger dispersion of the relaxation time T1 with frequency for the case of sodium sulfate as compared to sodium chloride salt crusts. To gain insight into these results, we perform molecular dynamics simulations of salt solutions confined within slit nanopores made of either NaCl or Na2SO4. We find a strong dependence of the value of the relaxation time T1 on pore size and salt concentration. Our simulations reveal the complex interplay between the adsorption of ions at the solid surface, the structure of water near the interface, and the dispersion of T1 at low frequency, which we attribute to adsorption-desorption events.



https://doi.org/10.1021/acs.langmuir.3c00036
Hu, Ping; Dong, Yulian; Yang, Guowei; Chao, Xin; He, Shijiang; Zhao, Huaping; Fu, Qun; Lei, Yong
Hollow CuSbSy coated by nitrogen-doped carbon as anode electrode for high-performance potassium-ion storage. - In: Batteries, ISSN 2313-0105, Bd. 9 (2023), 5, 238, S. 1-15

As a potential anode material for potassium-ion batteries (PIBs), bimetallic sulfides are favored by researchers for their high specific capacity, low cost, and long cycle life. However, the non-ideal diffusion rate and poor cycle stability pose significant challenges in practical applications. In this work, bimetallic sulfide CuSbSyC with a yolk-shell structure was synthesized by in situ precipitation and carbonization. When CuSbSy is applied in the anode of PIBs, it can provide the desired capacity and reduce the volume expansion of the compound through the synergistic effect between copper and antimony. At the same time, the existence of the nitrogen-doped carbon shell confines the material within the shell while improving its electrical conductivity, inhibiting its volume expansion and aggregation. Therefore, CuSbSy@C exhibits a satisfactory capacity (438.8 mAh g^-1 at 100 mA g^-1 after 60 cycles) and an excellent long cycle life (174.5 mAh g^-1 at 1000 mA g^-1 after 1000 cycles).



https://doi.org/10.3390/batteries9050238
Hu, Yongxu; Wang, Zhongwu; Huang, Yinan; Shi, Rui; Wang, Shuguang; Chen, Xiaosong; Bi, Jinshun; Xuan, Yundong; Lei, Yong; Li, Liqiang; Yang, Chuluo; Hu, Wenping
Deep ultraviolet phototransistor based on thiophene-fluorobenzene oligomer with high mobility and performance. - In: Chinese journal of chemistry, ISSN 1614-7065, Bd. 41 (2023), 13, S. 1539-1544

Deep ultraviolet (UV) photodetectors have important applications in the industrial and military fields. However, little research has been reported on organic phototransistors (OPTs) in the deep ultraviolet range. Here, a novel organic semiconductor containing a small torsion angle and low π-conjugation 2,2':5',2”-terthiophene groups, oF-PTTTP, is designed and synthesized, which exhibits high carrier mobility and unique deep ultraviolet response. Accordingly, an OPT based on oF-PTTTP single crystal shows high responsivity to deep-UV light. The photodetectors achieve high photoresponsivity (R) of 857 A/W and detectivity (D*) of 3.2×10^15 Jones under 280 nm light illumination (only 95 nW&hahog;cm^-2). To the best of our knowledge, 280 nm is the deepest detection wavelength reported for organic phototransistors and this work presents a new molecule design concept for organic phototransistors with deep-UV detection.



https://doi.org/10.1002/cjoc.202200795