Publikationen an der Fakultät für Mathematik und Naturwissenschaften ab 2019

Anzahl der Treffer: 900
Erstellt: Tue, 30 Apr 2024 23:07:29 +0200 in 0.0956 sec


Mejia Chueca, Maria del Carmen; Graske, Marcus; Winter, Andreas; Baumer, Christoph; Stich, Michael; Mattea, Carlos; Ispas, Adriana; Isaac, Nishchay Angel; Schaaf, Peter; Stapf, Siegfried; Jacobs, Heiko O.; Bund, Andreas
Electrodeposition of reactive aluminum-nickel coatings in an AlCl3:[EMIm]Cl ionic liquid containing nickel nanoparticles. - In: Journal of the Electrochemical Society, ISSN 1945-7111, Bd. 170 (2023), 7, 072504

The electrodeposition of aluminum-nickel coatings was performed by pulsed direct current in the ionic liquid (IL) 1.5:1 AlCl3:EMIm]Cl containing nickel nanoparticles (Ni NPs), for reactive dispersion coating application. Several electrochemical and characterization techniques were used to shed more light on the mechanism of Ni particle incorporation into the Al matrix. Thus, particle incorporation at the early stage of the deposition would mainly take place via particle adsorption at the substrate. However, as the thickness of the coating increases, it seems that the main mechanism for particle incorporation is via the reduction of ions adsorbed at the particles surface. Although a considerable high incorporation of Ni NPs has been achieved from the IL containing the highest concentration of Ni NPs (i.e. ∼33 wt% from a 20 g/L of Ni NPs bath), a high concentration of NPs in the IL resulted having a negative effect in terms of quality of the coatings, due to solidification of the electrolyte in a poorly conductive compound. Moreover, almost equivalent amounts of Ni and Al (Ni ∼45 wt.%and Al ∼44 wt.%) have been detected in some areas of the coatings. Such a layer composition would be desired for the targeted application.



https://doi.org/10.1149/1945-7111/ace382
Sun, Shougang; Qi, Jiannan; Wang, Shuguang; Wang, Zhongwu; Hu, Yongxu; Huang, Yinan; Fu, Yao; Wang, Yanpeng; Du, Haiyan; Hu, Xiaoxia; Lei, Yong; Chen, Xiaosong; Li, Liqiang; Hu, Wenping
General spatial confinement recrystallization method for rapid preparation of thickness-controllable and uniform organic semiconductor single crystals. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 38, 2301421, S. 1-8

Organic semiconductor single crystals (OSSCs) are ideal materials for studying the intrinsic properties of organic semiconductors (OSCs) and constructing high-performance organic field-effect transistors (OFETs). However, there is no general method to rapidly prepare thickness-controllable and uniform single crystals for various OSCs. Here, inspired by the recrystallization (a spontaneous morphological instability phenomenon) of polycrystalline films, a spatial confinement recrystallization (SCR) method is developed to rapidly (even at several second timescales) grow thickness-controllable and uniform OSSCs in a well-controlled way by applying longitudinal pressure to tailor the growth direction of grains in OSCs polycrystalline films. The relationship between growth parameters including the growth time, temperature, longitudinal pressure, and thickness is comprehensively investigated. Remarkably, this method is applicable for various OSCs including insoluble and soluble small molecules and polymers, and can realize the high-quality crystal array growth. The corresponding 50 dinaphtho[2,3-b:2″,3″-f]thieno[3,2-b]thiophene (DNTT) single crystals coplanar OFETs prepared by the same batch have the mobility of 4.1 ± 0.4 cm2 V^−1 s^−1, showing excellent uniformity. The overall performance of the method is superior to the reported methods in term of growth rate, generality, thickness controllability, and uniformity, indicating its broad application prospects in organic electronic and optoelectronic devices.



https://doi.org/10.1002/smll.202301421
Xu, Bowen; Zhang, Da; Peng, Chao; Liang, Feng; Zhao, Huaping; Yang, Bin; Xue, Dongfeng; Lei, Yong
Gel adsorbed redox mediators tempo as integrated solid-state cathode for ultra-long life quasi-solid-state Na-air battery. - In: Advanced energy materials, ISSN 1614-6840, Bd. 13 (2023), 42, 2302325, S. 1-10

In metal-air batteries, the integrated solid-state cathode is considered a promising design because it can solve the problem of high interfacial resistance of conventional solid-state cathodes. However, solid discharge products cannot be efficiently decomposed in an integrated solid-state cathode, resulting in batteries that are unable to operate for long periods of time. Herein, an integrated solid-state cathode (Gel-Tempo cathode) of sodium-air batteries (SABs) capable of promoting efficient decomposition of discharge product Na2O2 is designed. The Gel-Tempo cathode is synthesized by cationic-π interaction of redox mediator 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) and ionic liquid with carbon nanotubes. The Gel-Tempo cathode serves multiple functions as a redox mediator, flame retardancy, and high stability to air. In quasi-solid-state SABs, the Gel-Tempo cathode reduces overpotential to 1.15 V and improves coulomb efficiency to 84.5% (at a limited discharge capacity of 3000 mAh g−1) compared to gel cathodes. Experiments and density functional theory calculations indicate that Tempo significantly reduces the Gibbs free energy in the decomposition reaction of Na2O2, and high Tempo content is more conducive to enhancing the decomposition kinetics of Na2O2 and hence resulting in an ultra-long cycle life (1746 h). This work is crucial to promote practical applications of SABs, providing guidelines for functionalization design of integrated solid-state cathodes for metal-air batteries.



https://doi.org/10.1002/aenm.202302325
Täuscher, Eric; Freiberger, Emma
Cholesterin aus Hirn. - In: Nachrichten aus der Chemie, ISSN 1439-9598, Bd. 71 (2023), 1, S. 30-32

Cholesterin hat es bis in den Alltagssprachgebrauch gebracht. Allein deshalb ist es für Praktika im Chemiestudium ein interessanter Vertreter der Steroide. Zudem ist es einfach zu gewinnen.



Täuscher, Eric; Freiberger, Emma
Cholesterin aus Hirn. - In: Nachrichten aus der Chemie, ISSN 1868-0054, Bd. 71 (2023), 1, S. 30-32

Cholesterin hat es bis in den Alltagssprachgebrauch gebracht. Allein deshalb ist es für Praktika im Chemiestudium ein interessanter Vertreter der Steroide. Zudem ist es einfach zu gewinnen.



https://doi.org/10.1002/nadc.20234132329
Tsierkezos, Nikos; Freiberger, Emma; Ritter, Uwe; Krischok, Stefan; Ullmann, Fabian; Köhler, Michael
Application of nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles in biosensing. - In: Journal of solid state electrochemistry, ISSN 1433-0768, Bd. 27 (2023), 10, S. 2645-2658

Novel films consisting of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapor deposition technique and decorated with gold nanoparticles (AuNPs) possessing diameter of 14.0 nm. Electron optical microscopy analysis reveals that decoration of N-MWCNTs with AuNPs does not have any influence on their bamboo-shaped configuration. The electrochemical response of fabricated composite films, further denoted as N-MWCNTs/AuNPs, towards oxidation of dopamine (DA) to dopamine-o-quinone (DAQ) in the presence of ascorbic acid (AA) and uric acid (UA) was probed in real pig serum by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). The findings demonstrate that N-MWCNTs/AuNPs exhibit slightly greater electrochemical response and sensitivity towards DA/DAQ compared to unmodified N-MWCNTs. It is, consequently, obvious that AuNPs improve significantly the electrochemical response and detection ability of N-MWCNTs. The electrochemical response of N-MWCNTs/AuNPs towards DA/DAQ seems to be significantly greater compared to that of conventional electrodes, such as platinum and glassy carbon. The findings reveal that N-MWCNTs/AuNPs could serve as powerful analytical sensor enabling analysis of DA in real serum samples.



https://doi.org/10.1007/s10008-023-05562-2
Stapf, Siegfried; Shikhov, Igor; Arns, Christoph; Gizatullin, Bulat; Mattea, Carlos
Dipolar NMR relaxation of adsorbates on surfaces of controlled wettability. - In: Magnetic resonance letters, ISSN 2772-5162, Bd. 3 (2023), 3, S. 220-231

In reservoir rocks, the term “ageing” refers to extended exposition to crude oil; a typically water-wet sandstone will then gradually become oil-wet as a consequence of the deposition of insoluble fractions of oil onto the surface grains. Rocks have been aged artificially by subjecting them to a bitumen solution at elevated temperature in order to achieve comparable surface properties for three different types of rock: Bentheimer, Berea Buff and Liège Chalk. Using saturated and aromatic model compounds as proxies for crude oil, the nuclear magnetic resonance (NMR) relaxation dispersion in native and aged rocks was compared and correlated to the properties of paramagnetic impurities in these rock types. Perfluorated liquids were found to follow the same trend as deuterated and naturally occurring oil components, suggesting they can be used as suitable tracers for wettability studies since the 19F nucleus is absent in natural sources. By combining electron paramagnetic resonance (EPR) and dynamic nuclear polarization (DNP) it becomes possible to identify and quantify the origin of the dominating relaxation processes between native and aged rocks, providing an alternative approach to assess wettability in natural rocks.



https://doi.org/10.1016/j.mrl.2023.02.001
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Radicals on the silica surface: probes for studying dynamics by means of fast field cycling relaxometry and dynamic nuclear polarization. - In: Magnetic resonance letters, ISSN 2772-5162, Bd. 3 (2023), 3, S. 256-265

Determining the dynamics of adsorbed liquids on nanoporous materials is crucial for a detailed understanding of interactions and processes on the solid-liquid interface in many materials and porous systems. Knowledge of the influence of the presence of paramagnetic species on the surface or within the porous matrices is essential for fundamental studies and industrial processes such as catalysts. Magnetic resonance methods, such as electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), are powerful tools to address these questions and to quantify dynamics, electron-nuclear interaction features and their relation to the physical-chemical parameters of the system. This paper presents an NMR study of the dynamics of polar and nonpolar adsorbed liquids, represented by water, n-decane, deuterated water and nonane-d20, on the native silica surface as well as silica modified with vanadyl porphyrins. The analysis of the frequency dependence of the nuclear spin-lattice relaxation time is carried out by separating the intra- and intermolecular contributions, which were analyzed using reorientations mediated by translational displacements (RMTD) and force-free-hard-sphere (FFHS) models, respectively.



https://doi.org/10.1016/j.mrl.2023.03.006
Wolffram, Daniel; Abbott, Sam; An der Heiden, Matthias; Funk, Sebastian; Günther, Felix; Hailer, Davide; Heyder, Stefan; Hotz, Thomas; van de Kassteele, Jan; Küchenhoff, Helmut; Müller-Hansen, Sören; Syliqi, Diell̈e; Ullrich, Alexander; Weigert, Maximilian; Schienle, Melanie; Bracher, Johannes
Collaborative nowcasting of COVID-19 hospitalization incidences in Germany. - In: PLoS Computational Biology, ISSN 1553-7358, Bd. 19 (2023), 8, e1011394, S. 1-25

Real-time surveillance is a crucial element in the response to infectious disease outbreaks. However, the interpretation of incidence data is often hampered by delays occurring at various stages of data gathering and reporting. As a result, recent values are biased downward, which obscures current trends. Statistical nowcasting techniques can be employed to correct these biases, allowing for accurate characterization of recent developments and thus enhancing situational awareness. In this paper, we present a preregistered real-time assessment of eight nowcasting approaches, applied by independent research teams to German 7-day hospitalization incidences during the COVID-19 pandemic. This indicator played an important role in the management of the outbreak in Germany and was linked to levels of non-pharmaceutical interventions via certain thresholds. Due to its definition, in which hospitalization counts are aggregated by the date of case report rather than admission, German hospitalization incidences are particularly affected by delays and can take several weeks or months to fully stabilize. For this study, all methods were applied from 22 November 2021 to 29 April 2022, with probabilistic nowcasts produced each day for the current and 28 preceding days. Nowcasts at the national, state, and age-group levels were collected in the form of quantiles in a public repository and displayed in a dashboard. Moreover, a mean and a median ensemble nowcast were generated. We find that overall, the compared methods were able to remove a large part of the biases introduced by delays. Most participating teams underestimated the importance of very long delays, though, resulting in nowcasts with a slight downward bias. The accompanying prediction intervals were also too narrow for almost all methods. Averaged over all nowcast horizons, the best performance was achieved by a model using case incidences as a covariate and taking into account longer delays than the other approaches. For the most recent days, which are often considered the most relevant in practice, a mean ensemble of the submitted nowcasts performed best. We conclude by providing some lessons learned on the definition of nowcasting targets and practical challenges.



https://doi.org/10.1371/journal.pcbi.1011394
Zhang, Chenglin; Yan, Chengzhan; Jin, Rui; Hao, Jinhui; Xing, Zihao; Zhang, Peng; Wu, Yuhan; Li, Longhua; Zhao, Huaping; Wang, Shun; Shi, Weidong; Lei, Yong
Weak interaction between cations and anions in electrolyte enabling fast dual-ion storage for potassium-ion hybrid capacitors. - In: Advanced functional materials, ISSN 1616-3028, Bd. 33 (2023), 52, 2304086, S. 1-10

Identifying an effective electrolyte is a primary challenge for hybrid ion capacitors, due to the intricacy of dual-ion storage. Here, this study demonstrates that the electrochemical behavior of graphite oxide in ether-solvent electrolyte outperforms those in ester-solvent electrolytes for the cathode of potassium-ion hybrid capacitor. The experimental and theoretical assessments verify that the anion and cation are isolated effectively in dimethyl ether, endowing a weaker interaction between cations and anions compared to that of ester-solvent electrolytes, which facilitates the dual-ion diffusion and thus enhances the electrochemical performance. This result provides a rational strategy to realize high-rate cations and anions storage on the carbon cathode. Furthermore, a new low-cost and high-performance capacitor prototype, modified graphite oxide (MGO) cathode versus pristine graphite (PG) in ether-solvent electrolyte (MGOǁDMEǁPG), is proposed. It exhibits a high energy density of 150 Wh kg^−1cathode at a high power density of 21443 W kg^−1cathode (calculation based on total mass: 60 Wh kg^−1 at 8577 W kg^−1).



https://doi.org/10.1002/adfm.202304086